题目传送门

https://lydsy.com/JudgeOnline/problem.php?id=3589

题解

事件 \(0\) 不需要说,直接做就可以了。

事件 \(1\) 的话,考虑如果直接查询然后相加的话,会有很多段被算重了。于是考虑容斥,把算重的段给减掉就可以了。至于如何计算每一段的答案,直接树剖吧。


时间复杂度 \(O(q\log^2n)\)。

#include<bits/stdc++.h>

#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;} typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii; template<typename I> inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
} #define lc o << 1
#define rc o << 1 | 1
#define lowbit(x) ((x) & -(x)) const int N = 200000 + 7; int n, m, k, dfc;
int dep[N], f[N], siz[N], son[N], dfn[N], pre[N], top[N];
int qx[40], qy[40], pcnt[40]; struct Edge { int to, ne; } g[N << 1]; int head[N], tot;
inline void addedge(int x, int y) { g[++tot].to = y, g[tot].ne = head[x], head[x] = tot; }
inline void adde(int x, int y) { addedge(x, y), addedge(y, x); } struct Node { int add, sum; } t[N << 2];
inline void qadd(int o, int L, int R, int l, int r, int k) {
if (l <= L && R <= r) return t[o].add += k, t[o].sum += (R - L + 1) * k, (void)0;
int M = (L + R) >> 1;
if (l <= M) qadd(lc, L, M, l, r, k);
if (r > M) qadd(rc, M + 1, R, l, r, k);
t[o].sum = t[lc].sum + t[rc].sum + t[o].add * (R - L + 1);
}
inline int qsum(int o, int L, int R, int l, int r, int add = 0) {
if (l <= L && R <= r) return t[o].sum + add * (R - L + 1);
int M = (L + R) >> 1;
if (r <= M) return qsum(lc, L, M, l, r, add + t[o].add);
if (l > M) return qsum(rc, M + 1, R, l, r, add + t[o].add);
return qsum(lc, L, M, l, r, add + t[o].add) + qsum(rc, M + 1, R, l, r, add + t[o].add);
} inline void upd(int x, int k) { qadd(1, 1, n, dfn[x], dfn[x] + siz[x] - 1, k); }
inline int qry(int x, int y) {
int ans = 0;
while (top[x] != top[y]) {
if (dep[top[x]] < dep[top[y]]) std::swap(x, y);
ans += qsum(1, 1, n, dfn[top[x]], dfn[x]);
x = f[top[x]];
}
if (dep[x] > dep[y]) std::swap(x, y);
return ans += qsum(1, 1, n, dfn[x], dfn[y]);
} inline void dfs1(int x, int fa = 0) {
dep[x] = dep[fa] + 1, f[x] = fa, siz[x] = 1;
for fec(i, x, y) if (y != fa) dfs1(y, x), siz[x] += siz[y], siz[y] > siz[son[x]] && (son[x] = y);
}
inline void dfs2(int x, int pa) {
top[x] = pa, dfn[x] = ++dfc, pre[dfc] = x;
if (!son[x]) return; dfs2(son[x], pa);
for fec(i, x, y) if (y != f[x] && y != son[x]) dfs2(y, y);
}
inline int lca(int x, int y) {
while (top[x] != top[y]) dep[top[x]] >= dep[top[y]] ? x = f[top[x]] : y = f[top[y]];
return dep[x] < dep[y] ? x : y;
} inline bool intree(int x, int y) { return dfn[y] >= dfn[x] && dfn[y] <= dfn[x] + siz[x] - 1; }
inline pii merge(pii l1, pii l2) {
if (dep[l1.fi] > dep[l1.se]) std::swap(l1.fi, l1.se);
if (dep[l2.fi] > dep[l2.se]) std::swap(l2.fi, l2.se);
if (dep[l1.fi] > dep[l2.fi]) std::swap(l1, l2);
if (intree(l1.fi, l2.fi) && intree(l2.fi, l1.se)) return pii(l2.fi, lca(l1.se, l2.se));
else return pii(0, 0);
} inline void work() {
dfs1(1), dfs2(1, 1);
read(m);
while (m--) {
int opt, x, y;
read(opt);
if (opt == 0) read(x), read(y), upd(x, y);
else {
read(k);
for (int i = 1; i <= k; ++i) read(qx[1 << (i - 1)]), read(qy[1 << (i - 1)]);
int ans = 0, S = (1 << k) - 1;
for (int s = 1; s <= S; ++s) {
int sta = s ^ lowbit(s);
pcnt[s] = pcnt[sta] + 1;
if (sta) {
pii hkk = merge(pii(qx[lowbit(s)], qy[lowbit(s)]), pii(qx[sta], qy[sta]));
qx[s] = hkk.fi, qy[s] = hkk.se;
}
if (qx[s]) {
if (pcnt[s] & 1) ans += qry(qx[s], qy[s]);
else ans -= qry(qx[s], qy[s]);
}
}
printf("%d\n", ans & ((1 << 31) - 1));
}
}
} inline void init() {
read(n);
int x, y;
for (int i = 1; i < n; ++i) read(x), read(y), adde(x, y);
} int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}

bzoj3589 动态树 树链剖分+容斥的更多相关文章

  1. bzoj3589 动态树 求链并 容斥

    bzoj3589 动态树 链接 bzoj 思路 求链并. 发现只有最多5条链子,可以容斥. 链交求法:链顶是两条链顶深度大的那个,链底是两个链底的\(lca\) 如果链底深度小于链顶,就说明两条链没有 ...

  2. bzoj 3589: 动态树【树链剖分+容斥】

    因为一开始调试不知道unsigned怎么输出就没有加\n结果WA了一上午!!!!!然而最后放弃了unsigned选择了&2147483647 首先链剖,因为它所给的链一定是某个点到根的路径上的 ...

  3. JZOJ 5987 仙人掌毒题 (树链剖分 + 容斥)

    跟仙人掌其实没啥关系- Here 注意 每一次都O(n)O(n)O(n)一下算某些点都是黑点的概率其实并不是O(n2)O(n^2)O(n2),因为每个环只用算一次. #include <ccty ...

  4. hdu 5664 Lady CA and the graph(树的点分治+容斥)

    题意: 给你一个有n个点的树,给定根,叫你找第k大的特殊链 .特殊的链的定义:u,v之间的路径,经过题给的根节点. 题解:(来自BC官方题解) 对于求第k大的问题,我们可以通过在外层套一个二分,将其转 ...

  5. hdu 5792(树状数组,容斥) World is Exploding

    hdu 5792 要找的无非就是一个上升的仅有两个的序列和一个下降的仅有两个的序列,按照容斥的思想,肯定就是所有的上升的乘以所有的下降的,然后再减去重复的情况. 先用树状数组求出lx[i](在第 i ...

  6. Luogu4528 CTSC2008 图腾 树状数组、容斥

    传送门 设$f_i$表示$i$排列的数量,其中$x$表示不确定 那么$$ans=f_{1324}-f_{1432}-f_{1243}=(f_{1x2x}-f_{1423})-(f_{14xx}-f_{ ...

  7. 线段树&数链剖分

    傻逼线段树,傻逼数剖 线段树 定义: 线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点. 使用线段树可以快速的查找某一个节点在若干条线段中出现 ...

  8. hdu 5792 World is Exploding 树状数组+离散化+容斥

    World is Exploding Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  9. [LOJ3014][JOI 2019 Final]独特的城市——树的直径+长链剖分

    题目链接: [JOI 2019 Final]独特的城市 对于每个点,它的答案最大就是与它距离最远的点的距离. 而如果与它距离为$x$的点有大于等于两个,那么与它距离小于等于$x$的点都不会被计入答案. ...

随机推荐

  1. 前端每日实战:156# 视频演示如何用纯 CSS 创作一个飞机舷窗风格的 toggle 控件

    效果预览 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/jeaOrw 可交互视频 此视频是可 ...

  2. The Linux usage model for device tree data

    Linux and the Device Tree The Linux usage model for device tree data Author: Grant Likely grant.like ...

  3. Oracle Flashback Drop

    Ensure that the prerequisites described in Prerequisites of Flashback Drop are met. The following li ...

  4. 状压dp(8.8上午)

    神马是状态压缩? 就是当普通dp的每一维表示的状态非常少的时候,可以压缩成一维来表示 如果m==8 dp[i][0/1][0/1]......[0/1] 压缩一下 dp[i][s]表示到了第i行,状态 ...

  5. docker 命令汇总2

    docker version [root@cu-tmp-201 ~]# docker version Client: Version: 18.09.6 API version: 1.39 Go ver ...

  6. 《HTML5 与 CSS3 基础教程(第 8 版)》

    第 1 章 网页的构造块 文件名和文件夹名 文件名全部使用小写字母,用短横线分隔单词,用 .html 作为扩展名.混合使用大小写字 母会增加访问者输入正确地址以及找到页面的难度 文件夹的名称也应全部用 ...

  7. 阶段1 语言基础+高级_1-3-Java语言高级_06-File类与IO流_04 IO字节流_2_一切皆为字节

    这里的视频就是字节的形式,为了看着方便转换成了MB.一个字节就是8个二进制 包括文本,都是以字节的形式存储的

  8. UI自动化之特殊处理一(iframe\句柄\鼠标键盘)

    iframe\句柄\鼠标键盘是一些比较特殊的事件,需要特殊处理 目录 1.iframe 2.句柄(handle) 3.鼠标键盘 1.iframe iframe 是内嵌的网页元素,也可以说是内嵌的框架, ...

  9. 【ABAP系列】SAP 关于出口(user-exit)MV50AFZ1的一些问题

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[ABAP系列]SAP 关于出口(user-ex ...

  10. Good teachers,they inspire you, they entertain you,and you end up learning a ton even when you don't know it.

    pardon. v. 原谅.抱歉.再说一次 honourable.adj.值得钦佩的 specification.n.规格.标准 amongst.prep.在...中 gallon.n.加仑 comp ...