Big Data(七)MapReduce计算框架
二、计算向数据移动如何实现?
Hadoop1.x(已经淘汰):
hdfs暴露数据的位置
1)资源管理
2)任务调度
角色:JobTracker&TaskTracker
JobTracker: 资源管理、任务调度(主)
TaskTracker:任务管理、资源汇报(从)
Client:
1.会根据每次计算数据,咨询NN的元数据(block)。算:split 得到一个切片的清单 map的数量就有了
2.split是逻辑的,block是物理的,block身上有(offset,locatios),split和block是有映射 关系的。
结果:split包含偏移量,以及split对应的map任务应该移动到哪些节点(locations)
可以支持计算向数据移动了~!
生成计算程序未来运行时的文件
3.未来的移动应该相对可靠
cli会将jar,split清单,配置xml,上传到hdfs的目录中(上传的数据,副本数为10)
4.cli会调用JobTracker,通知要启动一个计算程序了,并且告知文件都放在了hdfs的哪个地方
JobTracker收到启动程序后:
1.从hdfs中取回【split清单】 2.根据自己收到的TT汇报的资源,最终确定每个split对应的map应该去到哪一个节点 3.未来TT再心跳的时候会取回分配自己的任务信息
TaskTracker
1.在心跳取回任务后 2.从hdfs下载jar,xml到本机 3.最终启动任务描述中的Map/Reduce Task(最终,代码在某个节点被启动,是通过cli上传,TT下载)
问题:
JobTracker3个问题:
1.单点故障
2.压力过大
3.集成了资源管理和任务调度,两者耦合
弊端:未来新的计算框架不能复用资源管理
1.重复造轮子
2.因为各自实现资源管理,因为他们不熟在同一批硬件上,因为隔离,所以不能感知
所以造成资源争抢
思路:(因果关系导向学习)
计算向数据移动 哪些节点可以去? 确定了节点对方怎么知道,一个失败了应该在什么节点重试 来个JobTracker搞定了2件事。但是,后来,问题暴露了
Hadoop2.x yarn的出现
yarn架构图
查看架构图的方法:
1.确定实主从架构还是无主架构
2.查看如何调度进程
Hadoop2.x yarn:
模型:
container 容器 不是docker
虚的
对象:属性:cpu,mem,io量
物理的:JVM->操作系统进程(1,NN会有线程监控container资源情况,超额,NM直接kill掉
1.NM会有线程监控container资源情况,超额,NM直接kill掉
2.cgroup内核级技术:在启动jvm进程,由kernel约束死
架构: 架构/框架
ResourceManger 主
负责整体资源的管理
NodeManager 从
向RS汇报心跳,提交自己的资源情况
MR运行 MapReduce on yarn
1.MR-cli(切片清单/配置/jar/上传到HDFS)
访问RM中申请AppMaster
2.RM选择一台不忙的节点通知NM启动一个Container,在里面反射一个MRAppMaster
3.启动MRMaster,从hdfs下载切片清单,向RM申请资源
4.由RM根据自己掌握的资源情况得到一个确定清单,通知NM来启动container
5.container启动后会反向注册到已经启动的MRAppMaster进程
6.MRAppMaster(曾经的JobTracker阉割版不带资源管理)最终将任务Task发送container(消息)
7.container会反射相应的Task类作为对象,调用方法执行,其结果就是我们的业务逻辑代码的执行
结论:
问题:
1.单点故障(曾经是全局的,JT挂了,整个计算层没有了调度)
yarn:每一个APP由一个自己的AppMaster调度(计算 程序级别)、
2.压力过大
yarn中每个计算程序自由AppMaster,每个AppMaster只负责自己计算程序的任务调度,轻量了
AppMaster在不同节点中启动的,默认有了负载的光环
3.继集成了【资源管理和任务调度】,两者耦合
因为Yarn只是资源管理,不负责具体的任务调度
是公立的,只要计算框架继承yarn的AppMaster,大家都可以使用一个统一视图的资源层!!
总结感悟:
从1.x到2.x
JT,TT是MR的常服务
2.x之后没有了这些服务
相对的:MR的cli,调度,任务,这些都是临时服务了。
Big Data(七)MapReduce计算框架的更多相关文章
- (第4篇)hadoop之魂--mapreduce计算框架,让收集的数据产生价值
摘要: 通过前面的学习,大家已经了解了HDFS文件系统.有了数据,下一步就要分析计算这些数据,产生价值.接下来我们介绍Mapreduce计算框架,学习数据是怎样被利用的. 博主福利 给大家赠送一套ha ...
- MR 01 - MapReduce 计算框架入门
目录 1 - 什么是 MapReduce 2 - MapReduce 的设计思想 2.1 如何海量数据:分而治之 2.2 方便开发使用:隐藏系统层细节 2.3 构建抽象模型:Map 和 Reduce ...
- Big Data(七)MapReduce计算框架(PPT截图)
一.为什么叫MapReduce? Map是以一条记录为单位映射 Reduce是分组计算
- MapReduce计算框架的核心编程思想
@ 目录 概念 MapReduce中常用的组件 概念 Job(作业) : 一个MapReduce程序称为一个Job. MRAppMaster(MR任务的主节点): 一个Job在运行时,会先启动一个进程 ...
- mapreduce计算框架
一. MapReduce执行过程 分片: (1)对输入文件进行逻辑分片,划分split(split大小等于hdfs的block大小) (2)每个split分片文件会发往不同的Mapper节点进行分散处 ...
- Hadoop中MapReduce计算框架以及HDFS可以干点啥
我准备学习用hadoop来实现下面的过程: 词频统计 存储海量的视频数据 倒排索引 数据去重 数据排序 聚类分析 ============= 先写这么多
- 【Big Data - Hadoop - MapReduce】hadoop 学习笔记:MapReduce框架详解
开始聊MapReduce,MapReduce是Hadoop的计算框架,我学Hadoop是从Hive开始入手,再到hdfs,当我学习hdfs时候,就感觉到hdfs和mapreduce关系的紧密.这个可能 ...
- 开源图计算框架GraphLab介绍
GraphLab介绍 GraphLab 是由CMU(卡内基梅隆大学)的Select 实验室在2010 年提出的一个基于图像处理模型的开源图计算框架.框架使用C++语言开发实现. 该框架是面向机器学习( ...
- 【Big Data - Hadoop - MapReduce】初学Hadoop之图解MapReduce与WordCount示例分析
Hadoop的框架最核心的设计就是:HDFS和MapReduce.HDFS为海量的数据提供了存储,MapReduce则为海量的数据提供了计算. HDFS是Google File System(GFS) ...
随机推荐
- D3(没写完
说在博客前 这篇博客有许多使用到 STL 的地方,由于本人实在是记不全,所以我也参考了北大的一些教材,就别说我黈力了 QwQ 数据结构 今天讲的是数据结构啦(也是我这个蒟蒻最喜欢的 一些天天见面的好盆 ...
- Cinder 架构分析、高可用部署与核心功能解析
目录 文章目录 目录 Cinder Cinder 的软件架构 cinder-api cinder-scheduler cinder-volume Driver 框架 Plugin 框架 cinder- ...
- vue中html、css、js 分离
在正常的创建和引用vue文件都是html.css.js三者在一起的,这样写起来虽然方便了,但是页面比较大或者代码比较多的情况下,即使使用组件有时代码也比较多,简单来说查找不变不利于编程,大的来说影像优 ...
- Netflix颠覆HR:我们只雇“成年人”
员工的最佳福利,是与优秀者一起工作 ● Patty McCord / 文 李钊/译 担任Netflix的首席人才官时,我与CEO里德·黑斯廷斯一起做了一份127页的PPT,命名为<自由& ...
- MySQL orzdba、dodba、top、iostat、vmstat、perf等
1 mysq自带的mysqladmin命令 mysqladmin -usystem -p*** -h127.0.0.1 -P3306 -r -i 1 extended-status \ |grep & ...
- windows 快捷键 部分
1.快速启动任务栏锁定的任务 WIN+任务栏任务顺序(左侧开始数) 2.运行 WIN+R mstsc--->远程桌面链接 regedit--->注册表信息 services.msc---& ...
- java:struts框架3(自定义拦截器,token令牌,文件上传和下载(单/多))
1.自定义拦截器: struts.xml: <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE ...
- java:Oracle(事务,分页,jdbc)Mysql(jdbc)
1.事务:transaction -- 事务开启的唯一条件就是:对数据库进行增,删,改的时候 -- 换句话说,对数据进行增删改以后,必须要执行提交或者回滚 -- 事务就是把数据库中的数据从一致状态转换 ...
- 利用Python如何实现数据驱动的接口自动化测试
前言 大家在接口测试的过程中,很多时候会用到对CSV的读取操作,本文主要说明Python3对CSV的写入和读取.下面话不多说了,来一起看看详细的介绍吧. 1.需求 某API,GET方法,token,m ...
- 【VS开发】Caffelib中出现的问题:强制链接静态库所有符号(包括未被使用的)
C++程序在链接一个静态库时,如果该静态库里的某些方法没有任何地方调用到,最终这些没有被调用到的方法或变量将会被丢弃掉,不会被链接到目标程序中.这样做大大减小生成二进制文件的体积.但是,某些时候,即使 ...