PCA原理推导及其在数据降维中的应用
一个信号往往包含多个维度,各个维度之间可能包含较强的相关性。下图表示的是一组二维信号x=(x1,x2),可以看到数据点基本上分布在x2=x1这条直线上,二者存在很强的相关性(也就是确定x1之后,就能确定x2的大致范围)。
主成分分析(Principal Component Analysis, PCA)的目的在于寻找到一组基,将信号投影到这组基上面,从而能够去除信号各个维度之间的相关性。如下图,u1和u2是通过PCA找到的两个基向量,将信号投影到该基向量上,信号各维度之间的相关性就基本被去除了。
信号各维度之间的相关性可以用相关系数来表示。假设一个维度为x1,另一个维度为x2,二者都相当于随机变量。那么相关系数为:
\]
如果两个变量没有相关性,那么相关系数为0。PCA的目的就在于使得信号任意两个维度之间的相关系数都变成0。上式分子为协方差,我们只考虑将协方差变为0。协方差公式如下:
\]
假设有一组信号,将它们表示为一个矩阵\(X_0\),维度为d*N。\(X_0\)的每一列代表一个信号,d表示信号的维度,N表示有N个信号。X表示各维度去除均值之后的信号。那么信号各维度两两之间的协方差可以表示为一个协方差矩阵:
\]
要去除各维度之间的相关性,相当于让S的非对角元素全变为0,使S对角化。因此我们需要找到一个矩阵U,使S对角化:
\]
正好,S的特征向量组成的矩阵能达到这一目的,因此把S的特征向量放入U的每一列中即可。U的列向量即为主成分向量。D为S的特征值组成的对角阵。我们把信号投影到特征向量中,得到的信号为:
\]
那么Z的协方差矩阵为:
\]
可见,投影后的信号Z各维度之间不存在相关性。实际中我们不需要将X投影到所有的主成分向量上。可以证明,只需要将X投影到前k个最大特征值对应的特征向量上即可,其余特征向量上的投影分量为噪声。k的数量往往远小于信号原来的维度,因此PCA可以对信号进行降维。只需要通过前k个主成分分量,即可复原原信号,并使恢复误差任意小。
S的维度为d*d。由于实际情况下d很大,远远大于信号个数N,直接求S的特征向量复杂度很高。考虑下面的矩阵:
\]
\]
\]
\]
可见,可以先求出\(S_0\)征向量\(u_0\),\(S\)的特征向量为\(Xu_0\)。由于\(S_0\)的维度较低,计算量极大地减少。要求\(S_0\)的特征向量,最直接的方法是做特征值分解。不过由于\(S_0\)是半正定矩阵,也可以通过SVD来求解。下面证明SVD分解与特征值分解之间的关系。对于一个矩阵A(不一定是方阵),SVD分解如下:
\]
\]
\]
上述第三个等式相当于对\(AA^T\)做特征值分解,U为\(AA^T\)的特征值向量矩阵,\(\Sigma^2\)为特征值矩阵。由此可见,要求\(AA^T\)的特征向量,只需对A做SVD分解,取A的左特征向量矩阵即可。
下面给出MATLAB代码示例。通过PCA分解对ORL人脸库中的人脸图片做降维处理,并用前k个主成分(即最大的k个特征值对应的特征向量)将人脸复原。
PCA代码:
function [avg,U]=fastPCA(X,k)
% X: X的每一列代表一张人脸图片
% k: 降维后的信号维度
%%
avg=mean(X,2);
X=bsxfun(@minus,X,avg);
[~,N]=size(X);
S0=1/N*(X'*X);
[U0,~]=eig(S0);
U0=U0(:,end:-1:1); % V0原本是按特征值升序排列的,要调换顺序
U=X*U0(:,1:k); % 得到真正协方差矩阵的主成分向量
for i=1:size(U,2)
U(:,i)=U(:,i)/norm(U(:,i)); % 向量归一化
end
主函数:
% 通过少量几个主成分来恢复人脸
clear;
load orl_data.mat; % 人脸库,每行代表一张人脸图像
k=350; % 把人脸降到k维,用k个主成分恢复人脸
X=Faces; % 矩阵的每一列代表一张人脸
tic;
[avg,U]=fastPCA(X,k);
toc;
X_extract=bsxfun(@minus,X,avg); % 减去均值
X_lowdim=U'*X_extract; % 降维后的图像表达
X_recv=U*X_lowdim; % 用k个主成分分量恢复人脸
X_recv=bsxfun(@plus,X_recv,avg); % 加上均值
im=reshape(X_recv(:,1),[112,92]);
figure,imshow(im,[]);
% 显示前16个主成分
u=zeros(112,92);
figure
for i=1:16
u(:)=U(:,i);
subplot(4,4,i),imshow(u,[]);
end
下图图1为原图,分别用50个主成分、200个主成分和350个主成分复原人脸图像,结果如下:
以下为前16个主成分人脸。可以看到越往后的脸,越不平滑。实际上是因为靠后的脸代表的是人脸的高频分量,包含了更多的细节信息,而靠前的人脸是低频分量,更多地包含了人脸的轮廓。这一点和小波变换是有点像的。
PCA原理推导及其在数据降维中的应用的更多相关文章
- 降维算法----PCA原理推导
1.从几何的角度去理解PCA降维 以平面坐标系为例,点的坐标是怎么来的? 图1 ...
- [机器学习]-PCA数据降维:从代码到原理的深入解析
&*&:2017/6/16update,最近几天发现阅读这篇文章的朋友比较多,自己阅读发现,部分内容出现了问题,进行了更新. 一.什么是PCA:摘用一下百度百科的解释 PCA(Prin ...
- 主成分分析PCA数据降维原理及python应用(葡萄酒案例分析)
目录 主成分分析(PCA)——以葡萄酒数据集分类为例 1.认识PCA (1)简介 (2)方法步骤 2.提取主成分 3.主成分方差可视化 4.特征变换 5.数据分类结果 6.完整代码 总结: 1.认识P ...
- (数据科学学习手札20)主成分分析原理推导&Python自编函数实现
主成分分析(principal component analysis,简称PCA)是一种经典且简单的机器学习算法,其主要目的是用较少的变量去解释原来资料中的大部分变异,期望能将现有的众多相关性很高的变 ...
- 数据降维-PCA主成分分析
1.什么是PCA? PCA(Principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据降维算法.PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特 ...
- 机器学习实战(Machine Learning in Action)学习笔记————10.奇异值分解(SVD)原理、基于协同过滤的推荐引擎、数据降维
关键字:SVD.奇异值分解.降维.基于协同过滤的推荐引擎作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harr ...
- 主成分分析(PCA)原理及推导
原文:http://blog.csdn.net/zhongkejingwang/article/details/42264479 什么是PCA? 在数据挖掘或者图像处理等领域经常会用到主成分分析,这样 ...
- PCA主成分分析算法的数学原理推导
PCA(Principal Component Analysis)主成分分析法的数学原理推导1.主成分分析法PCA的特点与作用如下:(1)是一种非监督学习的机器学习算法(2)主要用于数据的降维(3)通 ...
- 初识PCA数据降维
PCA要做的事降噪和去冗余,其本质就是对角化协方差矩阵. 一.预备知识 1.1 协方差分析 对于一般的分布,直接代入E(X)之类的就可以计算出来了,但真给你一个具体数值的分布,要计算协方差矩阵,根据这 ...
随机推荐
- [LeetCode]-algorithms-Longest Palindromic Substring
Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...
- idea中查看一个类的调用用和被调用用关系
- LeetCode_1114.按顺序打印(多线程)
LeetCode_1114 LeetCode-1114.按顺序打印 我们提供了一个类: public class Foo { public void one() { print("one&q ...
- Python的datetime与Decimal数据进行json序列化的简单说明
我们在Python的json.JSONEncoder类中可以查看Python数据序列化为JSON格式的数据时数据类型的对应关系: class JSONEncoder(object): "&q ...
- Java synchronized到底锁住的是什么?
使用环境:多线程java程序中. 作用:在多线程的环境下,控制synchronized代码段不被多个线程同时执行.synchronized既可以加在一段代码上,也可以加在方法上. 使用:synchro ...
- html readonly 和 disable 区别
readonly 和 disable的区别Readonly和Disabled它们都能够做到使用户不能够更改表单域中的内容.但是它们之间有着微小的差别,总结如下: Readonly只针对input(te ...
- Vue知识整理12:事件绑定
采用v-on命令进行事件的绑定操作,通过单击按钮,实现按钮文字上数值的增加 带参数的事件过程 可以添加$event事件,实现事件信息的获取
- 阶段3 1.Mybatis_06.使用Mybatis完成DAO层的开发_4 Mybatis中使用Dao实现类的执行过程分析-查询方法
delete方法没有并SqlSession的delete方法,而是调用的Upadte方法. 在测试类这里加断点. 实际的方法体内也加断点 运行测试方法,选择debug的方式 走到断点这里.会看到fac ...
- 【算法与数据结构】二叉堆和优先队列 Priority Queue
优先队列的特点 普通队列遵守先进先出(FIFO)的规则,而优先队列虽然也叫队列,规则有所不同: 最大优先队列:优先级最高的元素先出队 最小优先队列:优先级最低的元素先出队 优先队列可以用下面几种数据结 ...
- 【ABAP系列】SAP ABAP中ALV使用HTML的例子
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[ABAP系列]SAP ABAP中ALV使用HT ...