最小生成树(Kruskal算法)模板
#include<iostream>
#include<algorithm> using namespace std; int f[],n; struct node
{
int u,v,val;
bool operator < (node&a) const
{
return val<a.val;
}
}e[]; int findx(int x)
{
if(x==f[x])return x;
return f[x]=findx(f[x]);
}
int main()
{
int k,ans,x,y;
while(cin>>n)
{
ans=;
k=(n*(n-))/;
for(int i=;i<=n;i++)
f[i]=i;
for(int i=;i<k;i++)
cin>>e[i].u>>e[i].v>>e[i].val;
sort(e,e+k);
for(int i=;i<k;i++)
{
x=findx(e[i].u);
y=findx(e[i].v);
if(x!=y)
{
ans+=e[i].val;
f[x]=y;
n--;
if(!n)break;
}
}
cout<<ans<<endl;
}
return ;
}
最小生成树(Kruskal算法)模板的更多相关文章
- 【转】最小生成树——Kruskal算法
[转]最小生成树--Kruskal算法 标签(空格分隔): 算法 本文是转载,原文在最小生成树-Prim算法和Kruskal算法,因为复试的时候只用到Kruskal算法即可,故这里不再涉及Prim算法 ...
- 模板——最小生成树kruskal算法+并查集数据结构
并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每 ...
- 并查集与最小生成树Kruskal算法
一.什么是并查集 在计算机科学中,并查集是一种树型的数据结构,用于处理一些不交集的合并及查询问题.有一个联合-查找算法(union-find algorithm)定义了两个用于次数据结构的操作: Fi ...
- 【一个蒟蒻的挣扎】最小生成树—Kruskal算法
济南集训第五天的东西,这篇可能有点讲不明白提前抱歉(我把笔记忘到别的地方了 最小生成树 概念:一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的 ...
- 最小生成树Kruskal算法(1)
概念 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边. [1] 最小生成树可以用kruskal(克鲁斯卡尔)算法或prim(普里姆) ...
- 最小生成树——kruskal算法
kruskal和prim都是解决最小生成树问题,都是选取最小边,但kruskal是通过对所有边按从小到大的顺序排过一次序之后,配合并查集实现的.我们取出一条边,判断如果它的始点和终点属于同一棵树,那么 ...
- 最小生成树Kruskal算法
Kruskal算法就是把图中的所有边权值排序,然后从最小的边权值开始查找,连接图中的点,当该边的权值较小,但是连接在途中后会形成回路时就舍弃该边,寻找下一边,以此类推,假设有n个点,则只需要查找n-1 ...
- 最小生成树------Kruskal算法
Kruskal最小生成树算法的概略描述:1 T=Φ:2 while(T的边少于n-1条) {3 从E中选取一条最小成本的边(v,w):4 从E中删去(v,w):5 if((v,w)在T中不生成环) { ...
- 求最小生成树——Kruskal算法
给定一个带权值的无向图,要求权值之和最小的生成树,常用的算法有Kruskal算法和Prim算法.这篇文章先介绍Kruskal算法. Kruskal算法的基本思想:先将所有边按权值从小到大排序,然后按顺 ...
- 最小生成树 kruskal算法&prim算法
(先更新到这,后面有时间再补,嘤嘤嘤) 今天给大家简单的讲一下最小生成树的问题吧!(ps:本人目前还比较菜,所以最小生成树最后的结果只能输出最小的权值,不能打印最小生成树的路径) 本Tianc在刚学的 ...
随机推荐
- House_of_Force-ctf-bcloud
2016 bctf bcloud 下载: https://pan.baidu.com/s/1e-fvhaOJKzBQMxlrweLznw 提取码:ded5 放入ida中首先定位到 main()-> ...
- 【Linux开发】IO streaming DMA buffer importing
http://linuxtv.org/downloads/v4l-dvb-apis/dmabuf.html I/O流 (DMA缓存引用) 这是一个实验性接口,将来可能发生改变 DMABUF框架提供了在 ...
- linux 正则表达式 目录
linux 通配符与正则表达式 linux 通配符 linux 正则表达式 使用grep命令 linux 扩展正则表达式 egrep linux 正则表达式 元字符
- python 并发编程 多进程 队列
队列介绍 进程彼此之间互相隔离,要实现进程间通信(IPC),multiprocessing模块支持两种形式:队列和管道,这两种方式都是使用消息传递的 创建队列的类(底层就是以管道和锁定的方式实现) 制 ...
- Java本周总结1
这两周我上认真的课应该就是李老师的课了/ 第一周主要跟我们讲述了java的发展史何java开发环境的搭建,带领我们走进了java,李老师的精彩讲述让我们对Java有了深刻的认识/. jdk下载安装包我 ...
- vue组件事件(极客时间Vue视频笔记)
vue组件核心:事件 <body> <div class="app"> <todo-list></todo-list> {{mess ...
- ubuntu 虚拟机安装
ubuntu16.04.5 LTS 安装 1.下载ubuntu镜像 打开ubuntu官网镜像地址https://launchpad.net/ubuntu/+cdmirrors 在上面中搜索chin ...
- go net库
1 使用Listen函数创建一个server ln, err := net.Listen("tcp", ":8080") if err != nil { // ...
- [19/06/06-星期四] CSS基础_盒子模型
一.盒子模型(框模型.盒模型) CSS处理网页时,它认为每个元素都在一个不可见的矩形盒子里. 为什么想象成盒子模型?因为把所有元素想象成盒子,那么我们对网页的布局就相当于摆放盒子.我们只需要把相应的盒 ...
- IF条件控制
条件控制 定义 Python 条件语句是通过一条或多条语句的执行结果(True 或者 False)来决定执行的代码块. 如下图所示 IF语句 if condition_1: statement_blo ...