快速排序算法

快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比 较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构 上很有效率地被实现出来。

快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。

算法步骤:

1 从数列中挑出一个元素,称为 “基准”(pivot),

2 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。

3 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

  

public class quickSort {

        int a[] = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62, 99, 98, 54, 56, 17, 18, 23, 34, 15, 35, 25, 53, 51 };
public quickSort() {
quick(a);
} public int getMiddle(int[] list, int low, int high) {
int tmp = list[low]; // 数组的第一个作为中轴
while (low < high) {
while (low < high && list[high] >= tmp) {
high--;
}
list[low] = list[high]; // 比中轴小的记录移到低端
while (low < high && list[low] <= tmp) {
low++;
}
list[high] = list[low]; // 比中轴大的记录移到高端
}
list[low] = tmp; // 中轴记录到尾
return low; // 返回中轴的位置
} public void _quickSort(int[] list, int low, int high) {
if (low < high) {
int middle = getMiddle(list, low, high); // 将list数组进行一分为二
_quickSort(list, low, middle - 1); // 对低字表进行递归排序
_quickSort(list, middle + 1, high); // 对高字表进行递归排序
}
} public void quick(int[] a2) {
if (a2.length > 0) { // 查看数组是否为空
_quickSort(a2, 0, a2.length - 1);
}
} }

直接插入排序

基本思想:在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数也是排好顺序的。如此反复循环,直到全部排好顺序。

    public class insertSort {

        public insertSort() {
int a[] = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62, 99, 98, 54, 56, 17, 18, 23, 34, 15, 35, 25, 53, 51 };
int temp = 0;
for (int i = 1; i < a.length; i++) {
int j = i - 1;
temp = a[i];
for (; j >= 0 && temp < a[j]; j--) {
a[j + 1] = a[j]; // 将大于temp的值整体后移一个单位
}
a[j + 1] = temp;
}
}
}

简单选择排序

基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。

    public class selectSort {

        public selectSort() {
int a[] = { 1, 54, 6, 3, 78, 34, 12, 45 };
int position = 0;
for (int i = 0; i < a.length; i++) {
int j = i + 1;
position = i;
int temp = a[i]; for (; j < a.length; j++) {
if (a[j] < temp) {
temp = a[j];
position = j;
}
}
a[position] = a[i];
a[i] = temp;
}
} }

冒泡排序

基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。

    public class bubbleSort {
public bubbleSort() {
int a[] = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62, 99, 98, 54, 56, 17, 18, 23, 34, 15, 35, 25, 53, 51 };
int temp = 0;
for (int i = 0; i < a.length - 1; i++) {
for (int j = 0; j < a.length - 1 - i; j++) {
if (a[j] > a[j + 1]) {
temp = a[j];
a[j] = a[j + 1];
a[j + 1] = temp;
}
}
}
}
}

 

归并排序

归并排序(Merge sort,台湾译作:合并排序)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

算法步骤:

1. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列

2. 设定两个指针,最初位置分别为两个已经排序序列的起始位置

3. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置

4. 重复步骤3直到某一指针达到序列尾

5. 将另一序列剩下的所有元素直接复制到合并序列尾

public class mergingSort {
int a[] = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62, 99, 98, 54, 56, 17, 18, 23, 34, 15, 35, 25, 53, 51 };
public mergingSort() {
sort(a, 0, a.length - 1);
} public void sort(int[] data, int left, int right) {
// TODO Auto-generated method stub
if (left < right) {
// 找出中间索引
int center = (left + right) / 2;
// 对左边数组进行递归
sort(data, left, center);
// 对右边数组进行递归
sort(data, center + 1, right);
// 合并
merge(data, left, center, right);
} } public void merge(int[] data, int left, int center, int right) {
// TODO Auto-generated method stub
int[] tmpArr = new int[data.length];
int mid = center + 1;
// third记录中间数组的索引
int third = left;
int tmp = left; while (left <= center && mid <= right) {
// 从两个数组中取出最小的放入中间数组
if (data[left] <= data[mid]) {
tmpArr[third++] = data[left++];
} else {
tmpArr[third++] = data[mid++];
}
} // 剩余部分依次放入中间数组 while (mid <= right) {
tmpArr[third++] = data[mid++];
} while (left <= center) {
tmpArr[third++] = data[left++];
}
// 将中间数组中的内容复制回原数组
while (tmp <= right) {
data[tmp] = tmpArr[tmp++];
}
} }

堆排序算法

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

堆排序的平均时间复杂度为Ο(nlogn) 。

算法步骤:

创建一个堆H[0..n-1]

把堆首(最大值)和堆尾互换

3. 把堆的尺寸缩小1,并调用shift_down(0),目的是把新的数组顶端数据调整到相应位置

4. 重复步骤2,直到堆的尺寸为1

public class HeapSort {
int a[] = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62, 99, 98, 54, 56, 17, 18, 23, 34, 15, 35, 25, 53, 51 };
public HeapSort() {
heapSort(a);
} public void heapSort(int[] a) {
System.out.println("开始排序");
int arrayLength = a.length;
// 循环建堆
for (int i = 0; i < arrayLength - 1; i++) {
// 建堆
buildMaxHeap(a, arrayLength - 1 - i);
// 交换堆顶和最后一个元素
swap(a, 0, arrayLength - 1 - i);
System.out.println(Arrays.toString(a));
}
} private void swap(int[] data, int i, int j) {
// TODO Auto-generated method stub
int tmp = data[i];
data[i] = data[j];
data[j] = tmp;
}
// 对data数组从0到lastIndex建大顶堆
private void buildMaxHeap(int[] data, int lastIndex) {
// TODO Auto-generated method stub
// 从lastIndex处节点(最后一个节点)的父节点开始
for (int i = (lastIndex - 1) / 2; i >= 0; i--) {
// k保存正在判断的节点
int k = i;
// 如果当前k节点的子节点存在
while (k * 2 + 1 <= lastIndex) {
// k节点的左子节点的索引
int biggerIndex = 2 * k + 1;
// 如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在
if (biggerIndex < lastIndex) {
// 若果右子节点的值较大
if (data[biggerIndex] < data[biggerIndex + 1]) {
// biggerIndex总是记录较大子节点的索引
biggerIndex++;
}
}
// 如果k节点的值小于其较大的子节点的值
if (data[k] < data[biggerIndex]) {
// 交换他们
swap(data, k, biggerIndex);
// 将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值
k = biggerIndex;
} else {
break;
}
}
}
}
}

基数排序

(1)基本思想:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。

public class radixSort {

        int a[] = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62, 99, 98, 54, 101, 56, 17, 18, 23, 34, 15, 35, 25, 53, 51 };
public radixSort() {
sort(a);
} public void sort(int[] array) {
// 首先确定排序的趟数;
int max = array[0];
for (int i = 1; i < array.length; i++) {
if (array[i] > max) {
max = array[i];
}
} int time = 0;
// 判断位数;
while (max > 0) {
max /= 10;
time++;
}
// 建立10个队列;
List<ArrayList> queue = new ArrayList<ArrayList>();
for (int i = 0; i < 10; i++) {
ArrayList<Integer> queue1 = new ArrayList<Integer>();
queue.add(queue1);
}
// 进行time次分配和收集;
for (int i = 0; i < time; i++) {
// 分配数组元素;
for (int j = 0; j < array.length; j++) {
// 得到数字的第time+1位数;
int x = array[j] % (int) Math.pow(10, i + 1) / (int) Math.pow(10, i);
ArrayList<Integer> queue2 = queue.get(x);
queue2.add(array[j]);
queue.set(x, queue2);
} int count = 0;// 元素计数器;
// 收集队列元素;
for (int k = 0; k < 10; k++) {
while (queue.get(k).size() > 0) {
ArrayList<Integer> queue3 = queue.get(k);
array[count] = queue3.get(0);
queue3.remove(0);
count++;
}
}
}
}
}

希尔排序(最小增量排序)

基本思想:算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差d.对每组中全部元素进行直 接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。当增量减到1时,进行直接插入排序后,排序完成。

public class shellSort {

        public shellSort() {
int a[] = { 1, 54, 6, 3, 78, 34, 12, 45, 56, 100 };
double d1 = a.length;
int temp = 0;
while (true) {
d1 = Math.ceil(d1 / 2);
int d = (int) d1;
for (int x = 0; x < d; x++) {
for (int i = x + d; i < a.length; i += d) {
int j = i - d;
temp = a[i];
for (; j >= 0 && temp < a[j]; j -= d) {
a[j + d] = a[j];
}
a[j + d] = temp;
}
}
if (d == 1){
break;
         }
}
} }

二分查找算法

二分查找算法是一种在有序数组中查找某一特定元素的搜索算法。搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜 素过程结束; 如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组 为空,则代 表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。折半搜索每次把搜索区域减少一半,时间复杂度为Ο(logn) 。

       // 二分查找普通循环实现
public static int binSearch(int srcArray[], int key) {
int mid = srcArray.length / 2;
if (key == srcArray[mid]) {
return mid;
} int start = 0;
int end = srcArray.length - 1;
while (start <= end) {
mid = (end - start) / 2 + start;
if (key < srcArray[mid]) {
end = mid - 1;
} else if (key > srcArray[mid]) {
start = mid + 1;
} else {
return mid;
}
}
return -1;
}

BFPRT(线性查找算法)

BFPRT算法解决的问题十分经典,即从某n个元素的序列中选出第k大(第k小)的元素,通过巧妙的分 析,BFPRT可以保证在最坏情况下仍为线 性时间复杂度。该算法的思想与快速排序思想相似,当然,为使得算法在最坏情况下,依然能达到o(n)的时间复杂 度,五位算法作者做了精妙的处理。

算法步骤:

1. 将n个元素每5个一组,分成n/5(上界)组。

2. 取出每一组的中位数,任意排序方法,比如插入排序。

3. 递归的调用selection算法查找上一步中所有中位数的中位数,设为x,偶数个中位数的情况下设定为选取中间小的一个。

4. 用x来分割数组,设小于等于x的个数为k,大于x的个数即为n-k。

5. 若i==k,返回x;若i<k,在小于x的元素中递归查找第i小的元素;若i>k,在大于x的元素中递归查找第i-k小的元素。

终止条件:n=1时,返回的即是i小元素。

DFS(深度优先搜索)

深度优先搜索算法(Depth-First-Search),是搜索算法的一种。它沿着树的深度遍历树的节点,尽可能深的搜索树的分 支。当节点v 的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发 现的节点, 则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。DFS属于盲目搜索。

深度优先搜索是图论中的经典算法,利用深度优先搜索算法可以产生目标图的相应拓扑排序表,利用拓扑排序表可以方便的解决很多相关的图论问题,如最大路径问题等等。一般用堆数据结构来辅助实现DFS算法。

深度优先遍历图算法步骤:

1. 访问顶点v;

2. 依次从v的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v有路径相通的顶点都被访问;

3. 若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。

上述描述可能比较抽象,举个实例:

DFS 在访问图中某一起始顶点 v 后,由 v 出发,访问它的任一邻接顶点 w1;再从 w1 出发,访问与 w1邻 接但还没有访问过的顶点 w2;然后再从 w2 出发,进行类似的访问,… 如此进行下去,直至到达所有的邻接顶点都被访问过的顶点 u 为止。

接着,退回一步,退到前一次刚访问过的顶点,看是否还有其它没有被访问的邻接顶点。如果有,则访问此顶点,之后再从此顶点出发,进行与前述类似的访问;如果没有,就再退回一步进行搜索。重复上述过程,直到连通图中所有顶点都被访问过为止。

BFS(广度优先搜索)

广度优先搜索算法(Breadth-First-Search),是一种图形搜索算法。简单的说,BFS是从根节点开始,沿着树(图)的宽度遍历树(图)的节点。如果所有节点均被访问,则算法中止。BFS同样属于盲目搜索。一般用队列数据结构来辅助实现BFS算法。

算法步骤:

1. 首先将根节点放入队列中。

2. 从队列中取出第一个节点,并检验它是否为目标。

如果找到目标,则结束搜寻并回传结果。

否则将它所有尚未检验过的直接子节点加入队列中。

3. 若队列为空,表示整张图都检查过了——亦即图中没有欲搜寻的目标。结束搜寻并回传“找不到目标”。

4. 重复步骤2。

Dijkstra算法

戴克斯特拉算法(Dijkstra’s algorithm)是由荷兰计算机科学家艾兹赫尔·戴克斯特拉提出。迪科斯彻算法使用了广度优先搜索解决非负权有向图的单源最短路径问题,算法最终得到一个最短路径树。该算法常用于路由算法或者作为其他图算法的一个子模块。

该算法的输入包含了一个有权重的有向图 G,以及G中的一个来源顶点 S。我们以 V 表示 G 中所有顶点的集合。每一个图中的边,都是两个顶点 所形成的有序元素对。(u, v) 表示从顶点 u 到 v 有路径相连。我们以 E 表示G中所有边的集合,而边的权重则由权重函 数 w: E → [0, ∞] 定义。因此,w(u, v) 就是从顶点 u 到顶点 v 的非负权重(weight)。边的权重可以想像成两个顶点之 间的距离。任两点间路径的权重,就是该路径上所有边的权重总和。已知有 V 中有顶点 s 及 t,Dijkstra 算法可以找到 s 到 t的最低权 重路径(例如,最短路径)。这个算法也可以在一个图中,找到从一个顶点 s 到任何其他顶点的最短路径。对于不含负权的有向图,Dijkstra算法是目 前已知的最快的单源最短路径算法。

算法步骤:

1. 初始时令 S={V0},T={其余顶点},T中顶点对应的距离值

若存在<v0,vi>,d(V0,Vi)为<v0,vi>弧上的权值

若不存在<v0,vi>,d(V0,Vi)为∞

2. 从T中选取一个其距离值为最小的顶点W且不在S中,加入S

3. 对其余T中顶点的距离值进行修改:若加进W作中间顶点,从V0到Vi的距离值缩短,则修改此距离值

重复上述步骤2、3,直到S中包含所有顶点,即W=Vi为止

动态规划算法

动态规划(Dynamic programming)是一种在数学、计算机科学和经济学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。 动态规划常常适用于有重叠子问题和最优子结构性质的问题,动态规划方法所耗时间往往远少于朴素解法。

动态规划背后的基本思想非常简单。大致上,若要解一个给定问题,我们需要解其不同部分(即子问题),再合并子问题的解以得出原问题的解。 通常许 多 子问题非常相似,为此动态规划法试图仅仅解决每个子问题一次,从而减少计算量: 一旦某个给定子问题的解已经算出,则将其记忆化存储,以便下次需要同 一个 子问题解之时直接查表。 这种做法在重复子问题的数目关于输入的规模呈指数增长时特别有用。

关于动态规划最经典的问题当属背包问题。

算法步骤:

1. 最优子结构性质。如果问题的最优解所包含的子问题的解也是最优的,我们就称该问题具有最优子结构性质(即满足最优化原理)。最优子结构性质为动态规划算法解决问题提供了重要线索。

2. 子问题重叠性质。子问题重叠性质是指在用递归算法自顶向下对问题进行求解时,每次产生的子问题并不总是新问题,有些子问题会被重复计算多 次。 动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只计算一次,然后将其计算结果保存在一个表格中,当再次需要计算已经计算过的子问题 时,只是 在表格中简单地查看一下结果,从而获得较高的效率。

朴素贝叶斯分类算法

朴素贝叶斯分类算法是一种基于贝叶斯定理的简单概率分类算法。贝叶斯分类的基础是概率推理,就是在各种条件的存在不确定,仅知其出现概率的情况 下, 如何完成推理和决策任务。概率推理是与确定性推理相对应的。而朴素贝叶斯分类器是基于独立假设的,即假设样本每个特征与其他特征都不相关。

朴素贝叶斯分类器依靠精确的自然概率模型,在有监督学习的样本集中能获取得非常好的分类效果。在许多实际应用中,朴素贝叶斯模型参数估计使用最大似然估计方法,换言之朴素贝叶斯模型能工作并没有用到贝叶斯概率或者任何贝叶斯模型。

Java常见排序和编程算法的更多相关文章

  1. Java常见排序算法之归并排序

    在学习算法的过程中,我们难免会接触很多和排序相关的算法.总而言之,对于任何编程人员来说,基本的排序算法是必须要掌握的. 从今天开始,我们将要进行基本的排序算法的讲解.Are you ready?Let ...

  2. Java常见排序算法之Shell排序

    在学习算法的过程中,我们难免会接触很多和排序相关的算法.总而言之,对于任何编程人员来说,基本的排序算法是必须要掌握的. 从今天开始,我们将要进行基本的排序算法的讲解.Are you ready?Let ...

  3. Java常见排序算法之折半插入排序

    在学习算法的过程中,我们难免会接触很多和排序相关的算法.总而言之,对于任何编程人员来说,基本的排序算法是必须要掌握的. 从今天开始,我们将要进行基本的排序算法的讲解.Are you ready?Let ...

  4. Java常见排序算法之直接插入排序

    在学习算法的过程中,我们难免会接触很多和排序相关的算法.总而言之,对于任何编程人员来说,基本的排序算法是必须要掌握的. 从今天开始,我们将要进行基本的排序算法的讲解.Are you ready?Let ...

  5. Java常见排序算法之快速排序

    在学习算法的过程中,我们难免会接触很多和排序相关的算法.总而言之,对于任何编程人员来说,基本的排序算法是必须要掌握的. 从今天开始,我们将要进行基本的排序算法的讲解.Are you ready?Let ...

  6. Java常见排序算法之冒泡排序

    在学习算法的过程中,我们难免会接触很多和排序相关的算法.总而言之,对于任何编程人员来说,基本的排序算法是必须要掌握的. 从今天开始,我们将要进行基本的排序算法的讲解.Are you ready?Let ...

  7. Java常见排序算法之堆排序

    在学习算法的过程中,我们难免会接触很多和排序相关的算法.总而言之,对于任何编程人员来说,基本的排序算法是必须要掌握的. 从今天开始,我们将要进行基本的排序算法的讲解.Are you ready?Let ...

  8. Java常见排序算法之直接选择排序

    在学习算法的过程中,我们难免会接触很多和排序相关的算法.总而言之,对于任何编程人员来说,基本的排序算法是必须要掌握的. 从今天开始,我们将要进行基本的排序算法的讲解.Are you ready?Let ...

  9. java常见排序方法

    1.java常用排序方法 1) 选择排序         原理:a. 将数组中的每个元素,与第一个元素比较          如果这个元素小于第一个元素, 就将这个         两个元素交换.   ...

随机推荐

  1. 使用sublimeserver启动本地服务器进行调试

    最近在做前后端分离的项目,访问后台接口的时候会产生跨域问题,修改了相关配置解决了跨域问题,但是配置中只对开发环境进行了设置,没有设置生产环境,为了验证生产环境确实无法访问后台接口遂npm run bu ...

  2. window.location.href 与 window.location.href 的区别

  3. linux命令详解——sort

    [原文链接]:http://www.cnblogs.com/51linux/archive/2012/05/23/2515299.html 1 sort的工作原理 sort将文件的每一行作为一个单位, ...

  4. ip正则

    IP地址是指互联网协议地址(英语:Internet Protocol Address,又译为网际协议地址),是IP Address的缩写.IP地址是IP协议提供的一种统一的地址格式,它为互联网上的每一 ...

  5. 模拟赛小结:2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018)

    比赛链接:传送门 两个半小时的时候横扫了铜.银区的所有题,签到成功混进金区.奈何后面没能开出新的题. 最后一个小时的时候xk灵机一动想出了D题的做法,讨论了一波感觉可行,赶紧去敲.结束前2分钟终于过了 ...

  6. 记录一下RAC的使用

    1  常规的对数组的操作,包括遍历.刷选.映射.替换 // 遍历 NSArray * array = @["]; [array.rac_sequence.signal subscribeNe ...

  7. HTML5 Geolocation学习

    GeolocationAPI学习,我写的挺枯燥的,直接跳到最后看示例. 5.1 位置信息 HTML5 Geolocation API的使用方法相当简单.请求一个位置信息,如果用户同意,浏览器就会返回位 ...

  8. 手机端css实现active伪类

    今天遇到手机端的css中a标签的active不起作用,原本想循环a标签,给当前的a标签添加class来解决,可觉得有点儿小麻烦,经查资料了解到解决此问题,只需要添加一个touchstart的空事件即可 ...

  9. Python 练习实例3

    Python 练习实例3 题目:一个整数,它加上100后是一个完https://www.xuanhe.net/全平方数,再加上168又是一个完全平方数,请问该数是多少? 程序分析: 假设该数为 x. ...

  10. Mysql: 开启慢查询日志[ERROR] unknown variable 'log-slow-queries'处理办法

    参考: http://www.dataguru.cn/thread-305503-1-1.html # slow query log qjp 20160921 # mysql5.6版本以上,取消了参数 ...