模型视图变换(几何变换)矩阵:

1. 齐次坐标:两条平行线也可以相交。

在欧几里得空间中,两条平行线是无法相交的,但是在投影空间(Projective Space)这条定理就不再适用了。
比如上图中,两条平行的铁轨由于距离我们越来越远,终于在视平线处相交了,相交点是“无限远”。

欧式空间对2D/3D空间的描述恰到好处,但是对投影空间就力不能及了(事实上,欧式空间是投影空间的一个子集)。

通常在二维空间中,我们把一个点表示为(x, y),那么如果这个点位于无限远又如何表示呢?一般是 (∞,∞),

而这样一个数学符号对我们的意义就太小了,因为它很难进行计算和变换。

为了描述“在无限远处”相交这个情景,数学家们发明了另一种坐标系,即齐次坐标系。

解决方案:齐次坐标系

简单来说,齐次坐标系就是使用N+1个数来表示N维欧式空间的方式,比如欧式空间中有一点(X,Y),那么在齐次空间中将被表示为(x,y,w),其中W为投影变量,W的作用就是把齐次空间转换回欧式空间:

X = x/w 
Y = y/w

举个例子来说,欧式空间中有一点(1, 2),在齐次空间中将被表示为(1,2,1). 如果这个点向无限远处运动变成了(∞,∞),齐次坐标就可以表示为(1,2,0),因为1/0和2/0正好也是无限大。也就是说,我们可以不使用"∞"就可以表示无限大了。

验证

回到我们最初的问题,假如在欧式空间中有两条平行线:


只要C不等于D,他们永远不会相交。

现在我们使用齐次坐标系来重写这两条线:


很容易发现,这两条线在(x, y, 0) 初相交,也就是无限远处。

齐次坐标在计算机视觉处理上非常有用,比如把3D空间投影到屏幕上(2D)。

原文:http://www.songho.ca/math/homogeneous/homogeneous.html

2. 向量与齐次坐标

一个n维向量用齐次坐标表示为一个n+1维向量。

(x1,x1,...,xn)->(wx1,wx2,...,wxn,w),齐次向量的表示不是唯一的,例如齐次坐标[8,4,2]与[4,2,1]都表示点(4,2).

3.齐次坐标的应用

利用齐次坐标可以用矩阵运算,把二维、三维或高维空间点集从一个坐标系转换到另一个坐标系,实现了方便的数学计算。

opengl中相关的计算机图形变换矩阵之:齐次坐标 (摘编)的更多相关文章

  1. opengl中相关的计算机图形变换矩阵之:模型视图几何变换

    3. 二维变换矩阵 x'      a11 a12 a13    x         a11x a12y a13z y' =  a21 a22 a23     y    =  a21x a22y a2 ...

  2. 浅谈 OpenGL 中相关阻塞问题

    昨天我遇到一个问题,问题如下: 我使用了延迟渲染,我的渲染流程是:Pass1 --> CUDA并行计算 -->Pass2 CUDA并行计算中需要使用Pass1渲染生成的两张纹理,然而我在G ...

  3. OpenGL中glPushMatrix和glPopMatrix的原理

    glPushMatrix.glPopMatrix操作事实上就相当于栈里的入栈和出栈. 很多人不明确的可能是入的是什么,出的又是什么. 比如你当前的坐标系原点在你电脑屏幕的左上方.如今你调用glPush ...

  4. OpenGL中坐标系的理解(一)

    在OpenGL中,存在着至少存在着三种矩阵,对应着函数glMatrixMode()的三个参数:GL_MODELVIEW,GL_PROJECTION,GL_TEXTURE. 以下主要描述GL_MODEL ...

  5. Bullet物理引擎在OpenGL中的应用

    Bullet物理引擎在OpenGL中的应用 在开发OpenGL的应用之时, 难免要遇到使用物理来模拟OpenGL中的场景内容. 由于OpenGL仅仅是一个关于图形的开发接口, 因此需要通过第三方库来实 ...

  6. OpenGL中平移、旋转、缩放矩阵堆栈操作

    在OpenGL中,图元的几何变换均为线性变换,通过矩阵变换实现.OpenGL中的坐标用齐次坐标表示,即(x,y,z)表示成(x',y',z',h),其中x=x'/h; y=y'/h; z=z'/h. ...

  7. OpenGL中各种坐标系的理解[转]

    OPENGL坐标系可分为:世界坐标系和当前绘图坐标系. 世界坐标系:在OpenGL中,世界坐标系是以屏幕中心为原点(0, 0, 0),且是始终不变的.你面对 屏幕,你的右边是x正轴,上面是y正轴,屏幕 ...

  8. (转)思考:矩阵及变换,以及矩阵在DirectX和OpenGL中的运用问题:左乘/右乘,行优先/列优先,...

    转自:http://www.cnblogs.com/soroman/archive/2008/03/21/1115571.html 思考:矩阵及变换,以及矩阵在DirectX和OpenGL中的运用1. ...

  9. 计算机图形学OpenGL中的glLoadIdentity、glTranslatef、glRotatef原理,用法 .(转)

    单位矩阵 对角线上都是1,其余元素皆为0的矩阵. 在矩阵的乘法中,有一种矩阵起着特殊的作用,如同数的乘法中的1,我们称这种矩阵为单位矩阵. 它是个方阵,除左上角到右下角的对角线(称为主对角线)上的元素 ...

随机推荐

  1. nodejs以对象做对象的key导致value一直被覆盖

      问题描述 在开发中,实现技能状态的事件监听功能时,将状态对象作为key,存入事件管理器的监听列表,如下图: 实现后,运行程序,并没有报错,但是当某个事件发生时,只有一个状态被触发监听,而大多数状态 ...

  2. Java第三周总结报告

    本周做了什么? 本周利用Java语言重新回顾了条件结构与循环结构和字符串的处理等问题,认识到了Java与C/C++的在这两个方面的不同. 下周准备做什么? 学习Java面向对象的有关知识,包括对象与类 ...

  3. python中判断变量的类型

    python的数据类型有:数字(int).浮点(float).字符串(str),列表(list).元组(tuple).字典(dict).集合(set) 一般通过以下方法进行判断: 1.isinstan ...

  4. Linux五大网络IO模型图解

    对于一个应用程序即一个操作系统进程来说,它既有内核空间(与其他进程共享),也有用户空间(进程私有),它们都是处于虚拟地址空间中.用户进程是无法访问内核空间的,它只能访问用户空间,通过用户空间去内核空间 ...

  5. .net core 调用webservice

    原文:.net core 调用webservice 1.点击core项目添加链接的服务 2.键入对应的webservice地址,下载对应的代理服务 4.由于.net core  代理类只支持异步方法  ...

  6. 解决Asp.Net core 控制台出现乱码的情况

    将控制台的编码页修改成Unicode,在运行程序或者在程序里加一行Console.OutputEncoding = Encoding.Unicode; Console.OutputEncoding = ...

  7. 用SQL存储过程生成唯一单据号

    用SQL存储过程生成唯一单据号     在一些系统中,经理要生成单据号,为了不使多台客户端生成的单据号重复,一般要在服务端生成这种流水号,本文是在数据库中生成流水号,并且可以生成多种类型的单据号(比如 ...

  8. js包装类型的装箱拆箱

    https://www.jb51.net/article/155820.htm https://juejin.im/post/5cbaf130518825325050fb0a https://juej ...

  9. Android中res下anim和animator文件夹区别与总结

    1.anim文件夹 anim文件夹下存放tween animation(补间动画)和frame animation(逐帧动画) 逐帧动画: ①在animation-list中使用item定义动画的全部 ...

  10. python 绘制对象检测框及中文信息标注

    # 坐标顺序: 上->左->下->右 def draw_bounding_box_on_image(image, ymin, xmin, ymax, xmax, color='red ...