题面

(http://codeforces.com/problemset/problem/843/D)

题目大意:

给定一张带权无向图,有q次操作

操作有两种

1 v 询问1到v的最短路

2 c 将边l1,l2…lc" role="presentation">l1,l2…lcl1,l2…lc 的权值增加1

分析

暴力的做法是每次重新建图,然后跑一次最短路

这样的时间复杂度是O((n+m)qlog2n+Σc)" role="presentation">O((n+m)qlog2n+Σc)O((n+m)qlog2n+Σc),会TLE,且常数较大

这是由于Dijkstra算法中进行了多余的计算

在Dijkstra算法的执行过程中,对于相邻的点x,y,若dist[y]>dist[x]+w(x,y)" role="presentation">dist[y]>dist[x]+w(x,y)dist[y]>dist[x]+w(x,y),就把dist[y]设为dist[x]+w(x,y)" role="presentation">dist[y]设为dist[x]+w(x,y)dist[y]设为dist[x]+w(x,y)

算法执行结束后,一定有dist[y]≤dist[x]+w(x,y)" role="presentation">dist[y]≤dist[x]+w(x,y)dist[y]≤dist[x]+w(x,y)

即使边权从w(x,y)" role="presentation">w(x,y)w(x,y)增加到w′(x,y)=w(x,y)+Δw" role="presentation">w′(x,y)=w(x,y)+Δww′(x,y)=w(x,y)+Δw,显然一定有dist[y]≤dist[x]+w′(x,y)" role="presentation">dist[y]≤dist[x]+w′(x,y)dist[y]≤dist[x]+w′(x,y)

我们要多次用w(x,y)+Δw" role="presentation">w(x,y)+Δww(x,y)+Δw去更新dist,其中关于常量w(x,y)" role="presentation">w(x,y)w(x,y)的计算是重复的

因此,我们先在原图上跑一遍最短路,然后将边的长度更新成dist[x]+w(x,y)−dist[y]" role="presentation">dist[x]+w(x,y)−dist[y]dist[x]+w(x,y)−dist[y]

这样在新图上跑最短路和原图上跑是完全等价的,只不过新图上维护的是新的dist与原来的dist的差值,即Δdist" role="presentation">ΔdistΔdist

每次跑完最短路后更新dist[i]=dist[i]+Δdist[i]" role="presentation">dist[i]=dist[i]+Δdist[i]dist[i]=dist[i]+Δdist[i]

再像之前一样重设边权即可(代码中可以不用修改邻接表,直接在Dijkstra中算即可)

容易发现新图的边权很小,当有k条边的权值+1时,最短路的长度最多增加min(k,n−1)" role="presentation">min(k,n−1)min(k,n−1)

既然最短路长度的值域是确定的,我们就可以用值域个队列来模拟堆,设Q[i]存储dist=i的所有节点,我们只要维护dist最大值maxv,再逐一取出Q[0],Q[1]…Q[maxv]" role="presentation">Q[0],Q[1]…Q[maxv]Q[0],Q[1]…Q[maxv]中的全部元素即可

这样的Dijkstra算法的时间复杂度为O(n+m)" role="presentation">O(n+m)O(n+m)

总时间复杂度为O((n+m)q+Σc)" role="presentation">O((n+m)q+Σc)O((n+m)q+Σc)

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define INF 10000000000000000ll
#define maxn 100005
using namespace std;
int n,m,q;
long long dis[maxn];
long long delta[maxn];
struct edge {
int from;
int to;
int next;
int len;
} E[maxn<<1];
int head[maxn];
int size=0;
void add_edge(int u,int v,int w) {
size++;
E[size].from=u;
E[size].to=v;
E[size].len=w;
E[size].next=head[u];
head[u]=size;
} struct node {
int x;
long long d;
node() { }
node(int u,long long v) {
x=u;
d=v;
}
friend bool operator <(node u,node v) {
return u.d>v.d;
}
};
void dijkstra() {
priority_queue<node>heap;
for(int i=1; i<=n; i++) dis[i]=INF;
dis[1]=0;
heap.push(node(1,0));
while(!heap.empty()) {
int x=heap.top().x;
heap.pop();
for(int i=head[x]; i; i=E[i].next) {
int y=E[i].to;
if(dis[x]+E[i].len<dis[y]) {
dis[y]=dis[x]+E[i].len;
heap.push(node(y,dis[y]));
}
}
}
} queue<int>Q[maxn];
void new_dijkstra(int k) {
int maxv=0;
for(int i=1; i<=n; i++) {
delta[i]=INF;
}
delta[1]=0;
Q[0].push(1);
for(int i=0; i<=maxv; i++) {
while(!Q[i].empty()) {
int x=Q[i].front();
Q[i].pop();
if(delta[x]<i) continue;
for(int j=head[x]; j; j=E[j].next) {
int t=delta[x]+(dis[x]-dis[E[j].to]+E[j].len);
if(t<delta[E[j].to]) {
delta[E[j].to]=t;
if(t<=min(k,n-1)) {
Q[t].push(E[j].to);
maxv=max(maxv,t);
}
}
}
}
} for(int i=1; i<=n; i++) dis[i]=min(INF,dis[i]+delta[i]);
} int main() {
int u,v,w;
scanf("%d %d %d",&n,&m,&q);
for(int i=1; i<=m; i++) {
scanf("%d %d %d",&u,&v,&w);
add_edge(u,v,w);
}
dijkstra();
int cmd,k,x;
for(int i=1; i<=q; i++) {
scanf("%d",&cmd);
if(cmd==1) {
scanf("%d",&x);
if(dis[x]<INF) printf("%I64d\n",dis[x]);
else printf("-1\n");
} else {
scanf("%d",&k);
for(int i=1; i<=k; i++) {
scanf("%d",&x);
E[x].len++;
}
new_dijkstra(k);
}
}
}

Codeforces 843D (Dijkstra算法的优化,动态最短路)的更多相关文章

  1. 最短路模板(Dijkstra & Dijkstra算法+堆优化 & bellman_ford & 单源最短路SPFA)

    关于几个的区别和联系:http://www.cnblogs.com/zswbky/p/5432353.html d.每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个(草儿家到 ...

  2. 最短路径-迪杰斯特拉(dijkstra)算法及优化详解

    简介: dijkstra算法解决图论中源点到任意一点的最短路径. 算法思想: 算法特点: dijkstra算法解决赋权有向图或者无向图的单源最短路径问题,算法最终得到一个最短路径树.该算法常用于路由算 ...

  3. POJ 3268 Silver Cow Party 最短路—dijkstra算法的优化。

    POJ 3268 Silver Cow Party Description One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbe ...

  4. Dijkstra算法堆优化

    转自 https://blog.csdn.net/qq_41754350/article/details/83210517 再求单源最短路径时,算法有优劣之分,个人认为在时间方面 朴素dijkstra ...

  5. Dijkstra算法堆优化详解

    DIJ算法的堆优化 DIJ算法的时间复杂度是\(O(n^2)\)的,在一些题目中,这个复杂度显然不满足要求.所以我们需要继续探讨DIJ算法的优化方式. 堆优化的原理 堆优化,顾名思义,就是用堆进行优化 ...

  6. Radix Heap ---Dijkstra算法的优化 BY Gremount

    Radix Heap 算法是在Dijkstra的Dial实现的基础上,通过减少对桶的使用,来优化算法的时间复杂度: Dial 时间复杂度是O(m+nC)     -------C是最长的链路 Radi ...

  7. [ACM_图论] Domino Effect (POJ1135 Dijkstra算法 SSSP 单源最短路算法 中等 模板)

    Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...

  8. 单源最短路径问题(dijkstra算法 及其 优化算法(优先队列实现))

    #define _CRT_SECURE_NO_WARNINGS /* 7 10 0 1 5 0 2 2 1 2 4 1 3 2 2 3 6 2 4 10 3 5 1 4 5 3 4 6 5 5 6 9 ...

  9. 最短路-朴素版Dijkstra算法&堆优化版的Dijkstra

    朴素版Dijkstra 目标 找到从一个点到其他点的最短距离 思路 ①初始化距离dist数组,将起点dist距离设为0,其他点的距离设为无穷(就是很大的值) ②for循环遍历n次,每层循环里找出不在S ...

随机推荐

  1. BSOJ5467 [CSPX2017#3]整数 莫比乌斯反演+杜教筛

    题意简述 给你两个整数\(n\),\(k\),让你求出这个式子 \[ \sum_{a_1=1}^n \sum_{a_2=a_1}^n \sum_{a_3=a_2}^n \cdots \sum_{a_k ...

  2. 运行biggan demo

    http://www.zhuanzhi.ai/document/8705953a704e1bf8e051c161d1587d88

  3. C#中[JsonIgnore]意义

    字面意义是忽略序列化,就是当字段在序列化时,被[JsonIgnore]标记了的字段将被忽略序列化 序列化输出中使用Id和Name属性,但我绝对不会对AlternateName和Color感兴趣.我用[ ...

  4. 6364. 【NOIP2019模拟2019.9.20】养马

    题目描述 题解 一种显然的水法:max(0,-(点权-边权之和*2)) 这样会挂是因为在中途体力值可能会更小,所以考虑求走完每棵子树所需的至少体力值 考虑从子树往上推求出当前点的答案 设每棵子树从根往 ...

  5. 原生js控制控制--弹窗的显示和隐藏

    以防浪费大家的时间,还是先上效果图吧,满足您的需求就往下look吧. 重要知识点:点击其他地方,也就是除了小叉子之外的地方也能够关闭弹窗哦.代码已标红    html代码: <button id ...

  6. spring boot mapper层传参数是用main的arg0(第一个参数),arg1(第二个参数)

    spring boot mapper层传参数是用main的arg0(第一个参数),arg1(第二个参数) 大于三个参数,用map传递 public interface FrontMapper{ //= ...

  7. Wannafly挑战赛16 #E 弹球弹弹弹 splay+基环树+各种思维

    链接:https://ac.nowcoder.com/acm/problem/16033来源:牛客网 有n个位置,标号为1到n的整数,m次操作,第i次操作放置一个弹球在b[i] xor c[i-1]处 ...

  8. POJ 1743 Musical Theme ( 后缀数组 && 最长不重叠相似子串 )

    题意 : 给 n 个数组成的串,求是否有多个“相似”且不重叠的子串的长度大于等于5,两个子串相似当且仅当长度相等且每一位的数字差都相等. 分析 :  根据题目对于 “ 相似 ” 串的定义,我们可以将原 ...

  9. [USACO07OPEN]Dining 题解

    前言 如果有人不会网络流,那么安利一下我网络最大流Dinic的博客 关于网络流,我多久没有碰这个算法了... 这是一道网络流好题. 题解 这道题目难点主要是构图. 这道题的构图一开始很容易想到建一个超 ...

  10. 随机森林(Random Forest,简称RF)和Bagging算法

    随机森林(Random Forest,简称RF) 随机森林就是通过集成学习的思想将多棵树集成的一种算法,它的基本单元是决策树,而它的本质属于机器学习的一大分支——集成学习(Ensemble Learn ...