easy version

hard version

问题分析

直接从hard version入手。不难发现从一个数\(x\)能得到的数个数是\(O(\log x)\)的。这样总共有\(O(n\log n)\)个数。然后对每一种数开一个大根堆维护前\(k\)个就好了。

参考程序

#include <bits/stdc++.h>
using namespace std; const int INF = 2147483647;
const int Maxn = 200010;
const int MaxAlpha = 200000;
int n, k, A[ Maxn ], Sum[ Maxn ];
priority_queue< int > Pq[ Maxn ];
int main() {
scanf( "%d%d", &n, &k );
for( int i = 1; i <= n; ++i ) scanf( "%d", &A[ i ] );
sort( A + 1, A + n + 1 );
for( int i = 1; i <= n; ++i ) {
int t = 0;
if( Pq[ A[ i ] ].size() == k ) Sum[ A[ i ] ] -= Pq[ A[ i ] ].top(), Pq[ A[ i ] ].pop();
Pq[ A[ i ] ].push( 0 );
while( A[ i ] ) {
++t; A[ i ] /= 2;
if( Pq[ A[ i ] ].size() < k ) Pq[ A[ i ] ].push( t ), Sum[ A[ i ] ] += t;
else
if( Pq[ A[ i ] ].top() > t ) {
Sum[ A[ i ] ] -= Pq[ A[ i ] ].top(), Pq[ A[ i ] ].pop();
Sum[ A[ i ] ] += t; Pq[ A[ i ] ].push( t );
}
}
}
int Ans = INF;
for( int i= 0; i <= MaxAlpha; ++i )
if( Pq[ i ].size() == k )
Ans = min( Ans, Sum[ i ] );
printf( "%d\n", Ans );
return 0;
}

CF1213D Equalizing by Division的更多相关文章

  1. D2. Equalizing by Division (hard version)

    D2. Equalizing by Division (hard version) 涉及下标运算一定要注意下标是否越界!!! 思路,暴力判断以每个数字为到达态最小花费 #include<bits ...

  2. Codeforces 1213D Equalizing by Division

    cf题面 中文题意 给n个数,每次可以把其中一个数字位运算右移一位(即整除以二),问要至少操作几次才能让这n个数中有至少k个相等. 解题思路 这题还有个数据范围更小的简单版本,n和k是50,\(a_i ...

  3. Equalizing by Division

    The only difference between easy and hard versions is the number of elements in the array. You are g ...

  4. codeforces Equalizing by Division (easy version)

    output standard output The only difference between easy and hard versions is the number of elements ...

  5. Codeforces Round 582

    Codeforces Round 582 这次比赛看着是Div.3就打了,没想到还是被虐了,并再次orz各位AK的大神-- A. Chips Moving 签到题.(然而签到题我还调了20min--) ...

  6. CF 题目选做

    写省选的题目对noip没什么大用 关键是 细节题或者是思考题比较重要 练思维自然是CF比较好了 把我见到的比较好的CF题放上来刷一刷. LINK:Complete the projects 就是说一个 ...

  7. python from __future__ import division

    1.在python2 中导入未来的支持的语言特征中division(精确除法),即from __future__ import division ,当我们在程序中没有导入该特征时,"/&qu ...

  8. [LeetCode] Evaluate Division 求除法表达式的值

    Equations are given in the format A / B = k, where A and B are variables represented as strings, and ...

  9. 关于分工的思考 (Thoughts on Division of Labor)

    Did you ever have the feeling that adding people doesn't help in software development? Did you ever ...

随机推荐

  1. 区间最值的优秀数据结构---ST表

    ST表,听起来高大上,实际上限制非常多,仅仅可以求最值问题: 为什么?先从原理看起: st表运用了倍增的思想:st[i][j] = min(st[i][j - 1],st[i + 2^(j - 1)) ...

  2. CodeForces 820B + 821C

    (点击题目即可查看原题) 820B Mister B and Angle in Polygon  题意:在一个正n边形中,每个顶点按顺序记为1~n,正n边形中任意三点顶点组成一个角,∠x1x2x3,问 ...

  3. # [爬虫Demo] pyquery+csv爬取猫眼电影top100

    目录 [爬虫Demo] pyquery+csv爬取猫眼电影top100 站点分析 代码君 [爬虫Demo] pyquery+csv爬取猫眼电影top100 站点分析 https://maoyan.co ...

  4. python中进程的几种创建方式

    在新创建的子进程中,会把父进程的所有信息复制一份,它们之间的数据互不影响. 使用os.fork()创建 该方式只能用于Unix/Linux操作系统中,在windows不能用. import os # ...

  5. php 技术点积累

    PHP 反射之动态代理 php跨域的几种方式 给 PHP 开启 shmop 扩展实现共享内存 php十进制转二进制不用函数 php+nodeJs+thrift协议,实现zookeeper节点数据自动发 ...

  6. luogu题解 P1707 【刷题比赛】矩阵加速递推

    题目链接: https://www.luogu.org/problemnew/show/P1707 分析: 洛谷的一道原创题,对于练习矩阵加速递推非常不错. 首先我们看一下递推式: \(a[k+2]= ...

  7. golang利用beego框架orm操作mysql

    GO引入orm框架操作mysql 在beego框架中引入orm操作mysql需要进行的步骤: 第一步:导入orm框架依赖,导入mysql数据库的驱动依赖 import ( "github.c ...

  8. JAVA核心技术--继承(1)

    1.继承:向上追溯,对同一批类的抽象,延续和扩展父类的一切信息! 1)关键字:extends      例如,父类是Animal,子类是Dog;   eg: public class Dog exte ...

  9. On Java 8

    On Java 8本书原作者为 [美] Bruce Eckel,即<Java 编程思想>的作者.本书是事实上的 <Java 编程思想>第五版.<Java 编程思想> ...

  10. centos7 yum快速安装LNMP

    1.安装nginx yum install nginx ##开启nginx service nginx start 2.安装MYSQL yum localinstall http://dev.mysq ...