CF1213D Equalizing by Division
问题分析
直接从hard version入手。不难发现从一个数\(x\)能得到的数个数是\(O(\log x)\)的。这样总共有\(O(n\log n)\)个数。然后对每一种数开一个大根堆维护前\(k\)个就好了。
参考程序
#include <bits/stdc++.h>
using namespace std;
const int INF = 2147483647;
const int Maxn = 200010;
const int MaxAlpha = 200000;
int n, k, A[ Maxn ], Sum[ Maxn ];
priority_queue< int > Pq[ Maxn ];
int main() {
scanf( "%d%d", &n, &k );
for( int i = 1; i <= n; ++i ) scanf( "%d", &A[ i ] );
sort( A + 1, A + n + 1 );
for( int i = 1; i <= n; ++i ) {
int t = 0;
if( Pq[ A[ i ] ].size() == k ) Sum[ A[ i ] ] -= Pq[ A[ i ] ].top(), Pq[ A[ i ] ].pop();
Pq[ A[ i ] ].push( 0 );
while( A[ i ] ) {
++t; A[ i ] /= 2;
if( Pq[ A[ i ] ].size() < k ) Pq[ A[ i ] ].push( t ), Sum[ A[ i ] ] += t;
else
if( Pq[ A[ i ] ].top() > t ) {
Sum[ A[ i ] ] -= Pq[ A[ i ] ].top(), Pq[ A[ i ] ].pop();
Sum[ A[ i ] ] += t; Pq[ A[ i ] ].push( t );
}
}
}
int Ans = INF;
for( int i= 0; i <= MaxAlpha; ++i )
if( Pq[ i ].size() == k )
Ans = min( Ans, Sum[ i ] );
printf( "%d\n", Ans );
return 0;
}
CF1213D Equalizing by Division的更多相关文章
- D2. Equalizing by Division (hard version)
D2. Equalizing by Division (hard version) 涉及下标运算一定要注意下标是否越界!!! 思路,暴力判断以每个数字为到达态最小花费 #include<bits ...
- Codeforces 1213D Equalizing by Division
cf题面 中文题意 给n个数,每次可以把其中一个数字位运算右移一位(即整除以二),问要至少操作几次才能让这n个数中有至少k个相等. 解题思路 这题还有个数据范围更小的简单版本,n和k是50,\(a_i ...
- Equalizing by Division
The only difference between easy and hard versions is the number of elements in the array. You are g ...
- codeforces Equalizing by Division (easy version)
output standard output The only difference between easy and hard versions is the number of elements ...
- Codeforces Round 582
Codeforces Round 582 这次比赛看着是Div.3就打了,没想到还是被虐了,并再次orz各位AK的大神-- A. Chips Moving 签到题.(然而签到题我还调了20min--) ...
- CF 题目选做
写省选的题目对noip没什么大用 关键是 细节题或者是思考题比较重要 练思维自然是CF比较好了 把我见到的比较好的CF题放上来刷一刷. LINK:Complete the projects 就是说一个 ...
- python from __future__ import division
1.在python2 中导入未来的支持的语言特征中division(精确除法),即from __future__ import division ,当我们在程序中没有导入该特征时,"/&qu ...
- [LeetCode] Evaluate Division 求除法表达式的值
Equations are given in the format A / B = k, where A and B are variables represented as strings, and ...
- 关于分工的思考 (Thoughts on Division of Labor)
Did you ever have the feeling that adding people doesn't help in software development? Did you ever ...
随机推荐
- 区间最值的优秀数据结构---ST表
ST表,听起来高大上,实际上限制非常多,仅仅可以求最值问题: 为什么?先从原理看起: st表运用了倍增的思想:st[i][j] = min(st[i][j - 1],st[i + 2^(j - 1)) ...
- CodeForces 820B + 821C
(点击题目即可查看原题) 820B Mister B and Angle in Polygon 题意:在一个正n边形中,每个顶点按顺序记为1~n,正n边形中任意三点顶点组成一个角,∠x1x2x3,问 ...
- # [爬虫Demo] pyquery+csv爬取猫眼电影top100
目录 [爬虫Demo] pyquery+csv爬取猫眼电影top100 站点分析 代码君 [爬虫Demo] pyquery+csv爬取猫眼电影top100 站点分析 https://maoyan.co ...
- python中进程的几种创建方式
在新创建的子进程中,会把父进程的所有信息复制一份,它们之间的数据互不影响. 使用os.fork()创建 该方式只能用于Unix/Linux操作系统中,在windows不能用. import os # ...
- php 技术点积累
PHP 反射之动态代理 php跨域的几种方式 给 PHP 开启 shmop 扩展实现共享内存 php十进制转二进制不用函数 php+nodeJs+thrift协议,实现zookeeper节点数据自动发 ...
- luogu题解 P1707 【刷题比赛】矩阵加速递推
题目链接: https://www.luogu.org/problemnew/show/P1707 分析: 洛谷的一道原创题,对于练习矩阵加速递推非常不错. 首先我们看一下递推式: \(a[k+2]= ...
- golang利用beego框架orm操作mysql
GO引入orm框架操作mysql 在beego框架中引入orm操作mysql需要进行的步骤: 第一步:导入orm框架依赖,导入mysql数据库的驱动依赖 import ( "github.c ...
- JAVA核心技术--继承(1)
1.继承:向上追溯,对同一批类的抽象,延续和扩展父类的一切信息! 1)关键字:extends 例如,父类是Animal,子类是Dog; eg: public class Dog exte ...
- On Java 8
On Java 8本书原作者为 [美] Bruce Eckel,即<Java 编程思想>的作者.本书是事实上的 <Java 编程思想>第五版.<Java 编程思想> ...
- centos7 yum快速安装LNMP
1.安装nginx yum install nginx ##开启nginx service nginx start 2.安装MYSQL yum localinstall http://dev.mysq ...