easy version

hard version

问题分析

直接从hard version入手。不难发现从一个数\(x\)能得到的数个数是\(O(\log x)\)的。这样总共有\(O(n\log n)\)个数。然后对每一种数开一个大根堆维护前\(k\)个就好了。

参考程序

#include <bits/stdc++.h>
using namespace std; const int INF = 2147483647;
const int Maxn = 200010;
const int MaxAlpha = 200000;
int n, k, A[ Maxn ], Sum[ Maxn ];
priority_queue< int > Pq[ Maxn ];
int main() {
scanf( "%d%d", &n, &k );
for( int i = 1; i <= n; ++i ) scanf( "%d", &A[ i ] );
sort( A + 1, A + n + 1 );
for( int i = 1; i <= n; ++i ) {
int t = 0;
if( Pq[ A[ i ] ].size() == k ) Sum[ A[ i ] ] -= Pq[ A[ i ] ].top(), Pq[ A[ i ] ].pop();
Pq[ A[ i ] ].push( 0 );
while( A[ i ] ) {
++t; A[ i ] /= 2;
if( Pq[ A[ i ] ].size() < k ) Pq[ A[ i ] ].push( t ), Sum[ A[ i ] ] += t;
else
if( Pq[ A[ i ] ].top() > t ) {
Sum[ A[ i ] ] -= Pq[ A[ i ] ].top(), Pq[ A[ i ] ].pop();
Sum[ A[ i ] ] += t; Pq[ A[ i ] ].push( t );
}
}
}
int Ans = INF;
for( int i= 0; i <= MaxAlpha; ++i )
if( Pq[ i ].size() == k )
Ans = min( Ans, Sum[ i ] );
printf( "%d\n", Ans );
return 0;
}

CF1213D Equalizing by Division的更多相关文章

  1. D2. Equalizing by Division (hard version)

    D2. Equalizing by Division (hard version) 涉及下标运算一定要注意下标是否越界!!! 思路,暴力判断以每个数字为到达态最小花费 #include<bits ...

  2. Codeforces 1213D Equalizing by Division

    cf题面 中文题意 给n个数,每次可以把其中一个数字位运算右移一位(即整除以二),问要至少操作几次才能让这n个数中有至少k个相等. 解题思路 这题还有个数据范围更小的简单版本,n和k是50,\(a_i ...

  3. Equalizing by Division

    The only difference between easy and hard versions is the number of elements in the array. You are g ...

  4. codeforces Equalizing by Division (easy version)

    output standard output The only difference between easy and hard versions is the number of elements ...

  5. Codeforces Round 582

    Codeforces Round 582 这次比赛看着是Div.3就打了,没想到还是被虐了,并再次orz各位AK的大神-- A. Chips Moving 签到题.(然而签到题我还调了20min--) ...

  6. CF 题目选做

    写省选的题目对noip没什么大用 关键是 细节题或者是思考题比较重要 练思维自然是CF比较好了 把我见到的比较好的CF题放上来刷一刷. LINK:Complete the projects 就是说一个 ...

  7. python from __future__ import division

    1.在python2 中导入未来的支持的语言特征中division(精确除法),即from __future__ import division ,当我们在程序中没有导入该特征时,"/&qu ...

  8. [LeetCode] Evaluate Division 求除法表达式的值

    Equations are given in the format A / B = k, where A and B are variables represented as strings, and ...

  9. 关于分工的思考 (Thoughts on Division of Labor)

    Did you ever have the feeling that adding people doesn't help in software development? Did you ever ...

随机推荐

  1. zookeeperAPI的常用方法

    zookeeper支持三种部署方式: 1 单机 2 集群 3 伪集群 删除节点 zkClient.delete(path);

  2. 客户端相关知识学习(五)之什么是webView

    webview是什么?作用是什么?和浏览器有什么关系? Android系统中内置了一款高性能 webkit 内核浏览器,在 SDK 中封装为一个叫做 WebView 组件也就是说WebView是一个基 ...

  3. 学习笔记--APIO 2018 二分专题 By wuvin

    前言: 在APIO 2018 Day2下午听wuvin讲二分,听了一上午的神仙,现在终于有可以听懂了. 专题: 平均边权最大 题目链接:https://www.questoj.cn/problem/3 ...

  4. javascript--获取一个页面各个标签的数量

    获取一个页面各个标签的数量 document.getElementsByTagName('*')--获取所有的标签. var obj = document.getElementsByTagName(' ...

  5. 多线程编程-- part 4 线程间的通信

    线程间的相互作用 线程之间需要一些协调通信,来共同完成一件任务. Object类相关的方法:notify(),notifyAll(),wait().会被所有的类继承,这些方法是final不能被重写.他 ...

  6. mui在tab选项卡中echarts图表不能动态随页面变化大小 只能固定大小

    在mui tab选项卡中一直都不能让echarts动态变化大小 只能固定大小来展示图表,网上说的window.onresize = mycharts.resize;方法根本就没有效果,后面在https ...

  7. json字符串与json对象的转换

    JSON(JavaScript Object Notation)格式是开发中较为常见的数据格式,优点是轻量,便于理解和解析生成.JSON对象是一个无序的键值对集合,以 { } 为开头和结尾,键与键之间 ...

  8. SSD源码解读——损失函数的构建

    之前,对SSD的论文进行了解读,可以回顾之前的博客:https://www.cnblogs.com/dengshunge/p/11665929.html. 为了加深对SSD的理解,因此对SSD的源码进 ...

  9. Firefox 的User Agent 将移除 CPU 架构信息

    Mozilla 计划从 Firefox 的 User Agent(用户代理)和几个支持的 API 中移除 CPU 架构信息,以减少 Firefox 用户的“数字指纹”.Web 浏览器会自动向用户在应用 ...

  10. 使用gson将字符串转换成对象

    Gson gson = new GsonBuilder().setDateFormat("yyyy-MM-dd HH:mm:ss").create(); System.out.pr ...