索引

索引的简介

简单来说,索引是一种数据结构 其目的在于提高查询效率 可以简单理解为“排好序的快速查找结构”

一般来说,索引本身也很大,不可能全部存储在内存中,因此索引往往以索引文件的形式存储在中磁盘上
我们一般所说的索引,如果没有特殊说明的话,就是指B+树结构组织的索引。其中聚集索引,次要索引,覆盖索引,复合索引,前缀索引,唯一索引默认都是使用B+树索引。 一般java开发知道这些基本够用了

索引的优势

类似大学图书馆建数目索引,提高数据检索效率,降低数据库的io成本
通过索引对数据进行排序,降低数据排序成本,降低了cpu的

劣势

索引实际上也是一张表,保存了主键和索引字段,并指向实体表的记录,所以索引列也要空间

虽然索引大大提高了查询速度,但是会降低更新表的速度,如对表进行insert,update和delete。因为更新表时,mysql不仅要保存数据,还要保存一下索引文件每次添加了索引列的字段

索引只是提高效率的一个因素,如果你的mysql有大数据量的表,就需要花时间研究建立最优秀的索引,或优化查询语句。

索引的使用

单值索引
唯一索引
复合索引

基本语法

show index from TableName;(查看表的索引)
eg:show index from city;
create [unique] index indexname(索引名称) on TableName(字段名);
eg:create index idx_city_name on city(cname);
eg:create index idx_city_idnamepid on city(id,name,pid);
drop index indexname on TableName;
eg:drop index idx_city_name on city;

使用ALERT命令
ALERT TABLE tbl_name ADD PRIMARY KEY(column_list);该语句添加一个主键,这意味着索引值必须是唯一的,且不能为null;
ALERT TABLE tbl_name ADD UNIQUE index_name(column_list);这条语句创建索引的值必须是唯一的(除了null外,null可能会出现多次)
ALERT TABLE tbl_name ADD INDEX index_name(colmun_list);添加普通索引,索引值可出现多次
ALERT TABLE tbl_name ADD FULLTEXT index_name(column_list);该语句指定了索引为FULLTEXt,用于全文索引

mysql索引结构

BTree索引
Hash索引
full-text索引
R-Tree索引

检索原理

哪些情况下需要创建索引

a.主键自动建立唯一索引
b.频繁作为查询条件的字段应该创建索引
c.查询中与其它表关联的字段,外键关系建立索引
d.频繁更新的字段不适合建立索引(因为每次更新不仅仅是更新数据还要更新索引,加重io负担)
e.where条件里用不到的字段不创建索引
f.单键/组合索引的选择问题(在高并发下倾向创建组合索引)
g.查询中排序的字段,排序字段若通过索引去访问将大大提高排序速度
h.查询中统计或分组的字段

哪些情况下不需要创建索引

a.表记录太少
b.经常增删改查的表(读少写多)
c.数据重复且分布平均的表字段,因此应该只为最经常查询和最经常排序的数据列建立索引,注意,如果某个数据列包含许多重复内容,为它建立索引就没有太大的实际效果

B-树

B-树,这里的 B 表示 balance( 平衡的意思),B-树是一种多路自平衡的搜索树 
它类似普通的平衡二叉树,不同的一点是B-树允许每个节点有更多的子节点。下图是 B-树的简化图.

B-树有如下特点:

  1. 所有键值分布在整颗树中;

  2. 任何一个关键字出现且只出现在一个结点中;

  3. 搜索有可能在非叶子结点结束;

  4. 在关键字全集内做一次查找,性能逼近二分查找;

B+ 树

B+树是B-树的变体,也是一种多路搜索树, 它与 B- 树的不同之处在于:

  1. 所有关键字存储在叶子节点出现,内部节点(非叶子节点并不存储真正的 data)

  2. 为所有叶子结点增加了一个链指针

简化 B+树 如下图

为什么使用B-/B+ Tree

红黑树等数据结构也可以用来实现索引,但是文件系统及数据库系统普遍采用B-/+Tree作为索引结构。MySQL 是基于磁盘的数据库系统,索引往往以索引文件的形式存储的磁盘上,索引查找过程中就要产生磁盘I/O消耗,相对于内存存取,I/O存取的消耗要高几个数量级,索引的结构组织要尽量减少查找过程中磁盘I/O的存取次数。为什么使用B-/+Tree,还跟磁盘存取原理有关。

局部性原理与磁盘预读

由于磁盘的存取速度与内存之间鸿沟,为了提高效率,要尽量减少磁盘I/O.磁盘往往不是严格按需读取,而是每次都会预读,磁盘读取完需要的数据,会顺序向后读一定长度的数据放入内存。而这样做的理论依据是计算机科学中著名的局部性原理:

  1. 当一个数据被用到时,其附近的数据也通常会马上被使用
  2. 程序运行期间所需要的数据通常比较集中

由于磁盘顺序读取的效率很高(不需要寻道时间,只需很少的旋转时间),因此对于具有局部性的程序来说,预读可以提高I/O效率.预读的长度一般为页(page)的整倍数。

MySQL(默认使用InnoDB引擎),将记录按照页的方式进行管理,每页大小默认为16K(这个值可以修改).linux 默认页大小为4K

B-/+Tree索引的性能分析

实际实现B-Tree还需要使用如下技巧:
每次新建节点时,直接申请一个页的空间,这样就保证一个节点物理上也存储在一个页里,加之计算机存储分配都是按页对齐的,就实现了一个结点只需一次I/O。
假设 B-Tree 的高度为 h,B-Tree中一次检索最多需要h-1次I/O(根节点常驻内存),渐进复杂度为O(h)=O(logdN)O(h)=O(logdN)。一般实际应用中,出度d是非常大的数字,通常超过100,因此h非常小(通常不超过3)。
而红黑树这种结构,h明显要深的多。由于逻辑上很近的节点(父子)物理上可能很远,无法利用局部性,所以红黑树的I/O渐进复杂度也为O(h),效率明显比B-Tree差很多。

为什么使用 B+树

  1. B+树更适合外部存储,由于内节点无 data 域,一个结点可以存储更多的内结点,每个节点能索引的范围更大更精确,也意味着 B+树单次磁盘IO的信息量大于B-树,I/O效率更高。

  2. Mysql是一种关系型数据库,区间访问是常见的一种情况,B+树叶节点增加的链指针,加强了区间访问性,可使用在范围区间查询等,而B-树每个节点 key 和 data 在一起,则无法区间查找。

原文链接:https://segmentfault.com/a/1190000004690721

B-/B+树 MySQL索引结构的更多相关文章

  1. MYSQL索引结构原理、性能分析与优化

    [转]MYSQL索引结构原理.性能分析与优化 第一部分:基础知识 索引 官方介绍索引是帮助MySQL高效获取数据的数据结构.笔者理解索引相当于一本书的目录,通过目录就知道要的资料在哪里, 不用一页一页 ...

  2. 【转】由浅入深探究mysql索引结构原理、性能分析与优化

    摘要: 第一部分:基础知识 第二部分:MYISAM和INNODB索引结构 1.简单介绍B-tree B+ tree树 2.MyisAM索引结构 3.Annode索引结构 4.MyisAM索引与Inno ...

  3. MySQL 索引结构 hash 有序数组

    MySQL 索引结构 hash 有序数组 除了最常见的树形索引结构,Hash索引也有它的独到之处.   Hash算法 Hash本身是一种函数,又被称为散列函数. 它的思路很简单:将key放在数组里,用 ...

  4. 一天五道Java面试题----第七天(mysql索引结构,各自的优劣--------->事务的基本特性和隔离级别)

    这里是参考B站上的大佬做的面试题笔记.大家也可以去看视频讲解!!! 文章目录 1 .mysql索引结构,各自的优劣 2 .索引的设计原则 3 .mysql锁的类型有哪些 4 .mysql执行计划怎么看 ...

  5. Mysql索引结构及常见索引的区别

    一.Mysql索引主要有两种结构:B+Tree索引和Hash索引 Hash索引 mysql中,只有Memory(Memory表只存在内存中,断电会消失,适用于临时表)存储引擎显示支持Hash索引,是M ...

  6. MySQL索引结构--由 B-/B+树看

    B-树 B-树,这里的 B 表示 balance( 平衡的意思),B-树是一种多路自平衡的搜索树它类似普通的平衡二叉树,不同的一点是B-树允许每个节点有更多的子节点.下图是 B-树的简化图. B-树有 ...

  7. mysql系列十、mysql索引结构的实现B+树/B-树原理

    一.MySQL索引原理 1.索引背景 生活中随处可见索引的例子,如火车站的车次表.图书的目录等.它们的原理都是一样的,通过不断的缩小想要获得数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的 ...

  8. MySQL索引结构之B+树索引(面)

    首先要明白索引(index)是在存储引擎(storage engine)层面实现的,而不是server层面.不是所有的存储引擎都支持所有的索引类型.即使多个存储引擎支持某一索引类型,它们的实现和行为也 ...

  9. 2020-05-18:MYSQL为什么用B+树做索引结构?平时过程中怎么加的索引?

    福哥答案2020-05-18:此答案来自群员:因为4.0成型那个年代,B树体系大量用于文件存储系统,甚至当年的Longhorn的winFS都是基于b树做索引,开源而且好用的也就这么个体系了.B+树的磁 ...

随机推荐

  1. git的配置设置

    git的基本配置 git是一个版本控制工具,既然是工具,那么就可以根据人的个人喜好来进行设置,git也提供了配置,可以根据自己的喜好来对它进行个性化的设计,以让自己舒服的玩. git有三个配置文件 / ...

  2. 如何学习ios(摘自知乎https://www.zhihu.com/question/20016551)

    著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处.作者:Wang Hailong链接:https://www.zhihu.com/question/20016551/answer/1 ...

  3. Django模型层1

    Django模板系统 官方文档 常用语法 只需要记两种特殊符号: {{  }}和 {% %} 变量相关的用{{}},逻辑相关的用{%%}. 变量 在Django的模板语言中按此语法使用:{{ 变量名 ...

  4. Ansible 管理Windows 受控端

       

  5. 【转】linux 查看哪些进程用了swap

    转自:http://blog.csdn.net/xiangliangyu/article/details/8213127 如果系统的物理内存用光了,则会用到swap.系统就会跑得很慢,但仍能运行;如果 ...

  6. 算法学习 howto

    入门: The Most Important Algorithms http://www.risc.jku.at/people/ckoutsch/stuff/e_algorithms.html Alg ...

  7. SubwayPlan

    GitHub:https://github.com/wakerh1/subwayBJ 北京地铁图片: 地铁出行路线规划项目需求及实现概要: 1.设计一种文件格式用于存储地铁信息 2.设计启动程序并读取 ...

  8. Flask实现分页功能

    可以参考: https://blog.csdn.net/weixin_36380516/article/details/80295101 也可以参考我的代码: https://github.com/z ...

  9. namenode和datanode的高可用性和故障处理

    一.Hadoop单点故障问题如何解决 Hadoop 1.0内核主要由两个分支组成:MapReduce和HDFS,众所周知,这两个系统的设计缺陷是单点故障,即MR的JobTracker和HDFS的Nam ...

  10. C++ GUI Qt4学习笔记09

    C++ GUI Qt4学习笔记09   qtc++ 本章介绍Qt中的拖放 拖放是一个应用程序内或者多个应用程序之间传递信息的一种直观的现代操作方式.除了剪贴板提供支持外,通常它还提供数据移动和复制的功 ...