HDU - 6601 Keen On Everything But Triangle 主席树
Keen On Everything But Triangle
感觉最近多校好多主席树的亚子,但是本人菜得很,还没学过主席树,看着队友写题就只能划水,\(WA\)了还不能帮忙\(debug\),所以深思熟虑之后决定学习一下主席树。
题意
问在\([l,r]\)区间内取三个数字构成三角形,问能构成的三角形最大的周长是多少?如果不能构成三角形输出\(“-1”\)。
思路
三角形构成的条件:
- 三条边
- 两边之和大于第三边
然后呢,我们要找最大的周长,那么我们很容易想到取最大的三条边,如果不行就顺延往下。
我们发现询问很多,暴力肯定不行。那么其实我们会发现,不能构成三角形的条件是两边之和小于等于第三边,那么可以想到斐波那契数列是前两项之和大于第三边,那么如果一直都不符合条件,那么我们也只会找大约\(44\)次第\(k\)大的值,肯定不超时。
然后想明白只后我们就开始暴力了。其实就是用主席树来维护数列,在\(\log{n}\)的时间里找到第\(k\)大的值,那强行用主席树找最大、第二大...,然后暴力找出最长周长就\(ok\)了。
AC代码
#include <map>
#include <set>
#include <list>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <cfloat>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define lowbit(x) x & (-x)
#define mes(a, b) memset(a, b, sizeof a)
#define fi first
#define se second
#define pii pair<int, int>
typedef unsigned long long int ull;
typedef long long int ll;
const int maxn = 1e5 + 10;
const int maxm = 1e5 + 10;
const ll mod = 1e9 + 7;
const ll INF = 1e18 + 100;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-8;
using namespace std;
struct Node{
int l, r, cnt;
}node[maxn*40];
int w[maxn];
int n, m;
int cas, tol, T;
vector<int> vv;
int a[maxn];
void update(int l, int r, int &x, int y, int pos){
tol++;
x = tol;
node[x] = node[y];
node[x].cnt++;
if(l == r) return;
int mid = l+r>>1;
if(pos <= mid)
update(l, mid, node[x].l, node[y].l, pos);
else
update(mid+1, r, node[x].r, node[y].r, pos);
}
int query(int l, int r, int x, int y, int k){
if(l == r)
return l;
int mid = l+r>>1;
int cnt = node[node[y].l].cnt - node[node[x].l].cnt;
if(cnt >= k)
return query(l, mid, node[x].l, node[y].l, k);
else
return query(mid+1, r, node[x].r, node[y].r, k-cnt);
}
int getid(int x){
return lower_bound(vv.begin(), vv.end(), x) - vv.begin()+1;
}
int main() {
while(~scanf("%d%d", &n, &m)){
vv.clear();
tol = 0;
mes(w, 0);
for(int i = 1; i <= n; i++){
scanf("%d",&a[i]);
vv.push_back(a[i]);
}
sort(vv.begin(), vv.end());
vv.erase(unique(vv.begin(), vv.end()), vv.end());
for(int i = 1; i <= n;i++){
int pos = getid(a[i]);
update(1, n, w[i], w[i-1], pos);
}
while(m--){
int l, r;
scanf("%d%d", &l, &r);
int b[4], flag = 0;
if(r - l + 1 < 3){
printf("-1\n");
continue;
}
b[1] = query(1, n, w[l-1], w[r], r-l+1)-1;
b[2] = query(1, n, w[l-1], w[r], r-l)-1;
for(int k = r-l-1; k >= 1; k--){
b[3] = query(1, n, w[l-1], w[r], k)-1;
if(vv[b[1]] < vv[b[2]]+vv[b[3]]){
printf("%lld\n", 1ll*vv[b[1]]+vv[b[2]]+vv[b[3]]);
flag = 1;
break;
}
for(int i = 1; i <= 2; i++)
b[i] = b[i+1];
}
if(!flag)
printf("-1\n");
}
}
return 0;
}
HDU - 6601 Keen On Everything But Triangle 主席树的更多相关文章
- 杭电多校HDU 6601 Keen On Everything But Triangle(主席树)题解
题意: 有\(n\)根长度不一的棍子,q次询问,求\([L,R]\)区间的棍子所能组成的周长最长的三角形.棍长\(\in [1, 1e9]\),n\(\in [1, 1e5]\). 思路: 由于不构成 ...
- hdu多校第二场1011 (hdu6601) Keen On Everything But Triangle 主席树
题意: 给定一个数列,每次询问一个区间,问这个区间中的值可组成的周长最大的三角形的周长. 题解: 定理1:给定一些值,这些值中组成边长最大的三角形的三条边的大小排名一定是连续的. 证明:假如第k大,第 ...
- HDU 4729 An Easy Problem for Elfness 主席树
题意: 给出一棵树,每条边有一个容量. 有若干次询问:\(S \, T \, K \, A \, B\),求路径\(S \to T\)的最大流量. 有两种方法可以增大流量: 花费\(A\)可以新修一条 ...
- HDU 6621"K-th Closest Distance"(二分+主席树)
传送门 •题意 有 $m$ 次询问,每次询问求 $n$ 个数中, $[L,R]$ 区间距 $p$ 第 $k$ 近的数与 $p$ 差值的绝对值: •题解 二分答案,假设当前二分的答案为 $x$,那么如何 ...
- 2019 Multi-University Training Contest 2 - 1011 - Keen On Everything But Triangle - 线段树
http://acm.hdu.edu.cn/showproblem.php?pid=6601 首先要贪心地想,题目要最长的边长,那么要怎么构造呢?在一段连续的区间里面,一定是拿出最长的三根出来比,这样 ...
- HDU 4251 The Famous ICPC Team Again 主席树
The Famous ICPC Team Again Problem Description When Mr. B, Mr. G and Mr. M were preparing for the ...
- 【HDU - 4348】To the moon(主席树在线区间更新)
BUPT2017 wintertraining(15) #8G 题意 给一个数组a,有n个数,m次操作.\(N, M ≤ 10^5, |A i| ≤ 10^9, 1 ≤ l ≤ r ≤ N, |d| ...
- 【HDOJ6601】Keen On Everything But Triangle(主席树)
题意:给定一个长为n的序列,有q次询问,每次询问[l,r]这段区间内挑三个数,能组成的三角形的最大周长,无解输出-1 n,q<=1e5,a[i]<=1e9 思路:题解写法和我的不太一样 先 ...
- 2019杭电多校第二场hdu6601 Keen On Everything But Triangle
Keen On Everything But Triangle 题目传送门 解题思路 利用主席树求区间第k小,先求区间内最大的值,再求第二大,第三大--直到找到连续的三个数可以构成一个三角形.因为对于 ...
随机推荐
- vue对组件以数组方式赋值的问题
当从后台直接调接口返回数据 直接将数组array赋值给定义的变量,会导致组件无法更改其它值,例如多选框,多选下拉框,会导致无法选中其它的值,也无法取消当前已赋值的选中项 data() { return ...
- hadoop分布式环境安装
1. 下载hadoop和jdk安装包到指定目录,并安装java环境. 2.解压hadoop到指定目录,配置环境变量.vim /etc/profile export JAVA_HOME=/home/xi ...
- 动态规划-递推-HDU2048
传送门:http://acm.hdu.edu.cn/showproblem.php?pid=2048 全错=全不匹配 设当前全错的个数是dp[n] 那么前(n-1)个全错的话,第n个数就可以从前(n- ...
- Linux下复杂PC问题——多进程编程/信号量通信/共享存储区
进程相关函数 pid_t fork(); 头文件:unistd.h,sys/types.h 作用:建立一个新进程(子进程),子进程与原进程(父进程)共享代码段,并拥有父进程的其他资源(数据.堆栈等)的 ...
- [Linux] 019 软件包管理简介
1. 软件包分类 源码包 脚本安装包 二进制包(RPM 包.系统默认包) 2. 源码包 (1)源码包的优点 开源,如果有足够的能力,可以修改源代码 可以自由选择所需的功能 软件是编译安装,所以更加适合 ...
- mysql 主从复制(mysql双机热备的实现)
转:http://blog.csdn.net/qq394829044/article/details/53203645 Mysql数据库没有增量备份的机制,当数据量太大的时候备份是一个很大的问题.还好 ...
- Linux终端下简单的登录程序 密码不回显
在Linux进行登录是输入密码不会被回显,所以我也写了个简单的登入程序,使得在输入密码时不再进行回显. #include <stdio.h> #include <stdlib.h&g ...
- ls命令输出文件的绝对路径
find $PWD | xargs ls -ld 再结合 grep 筛选
- go web编程——路由与http服务
本文主要讲解go语言web编程中的路由与http服务基本原理. 首先,使用go语言启动一个最简单的http服务: package main import ( "log" " ...
- NGUI的Tween动画的使用
一,在创建Tween有,alpha,color,width,height,position,rotation,scale和transfrom这几种动画类型 1>alpha:颜色由浅变深(透明度) ...