【攻克RabbitMQ】常见问题
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/zlt995768025/article/details/81938449
消息什么情况下会丢失?配合mandatory参数或备份交换器来提高程序的健壮性
发送消息的交换器并没有绑定任何队列,消息将会丢失
交换器绑定了某个队列,但是发送消息时的路由键无法与现存的队列匹配
预估队列的使用情况?
在后期运行过程中超过预定的阈值,可以根据实际情况对当前集群进行扩容或者将相应的队列迁移到其他集群。
消费消息?
推模式,拉模式
保证消息的可靠性?
RabbitMQ 提供了消息确认机制( message acknowledgement)。 消费者在订阅队列时,可以指定 autoAck 参数,当 autoAck 等于 false 时, RabbitMQ 会等待消费者显式地回复确认信号后才从内存(或者磁盘)中移去消息(实质上
是先打上删除标记,之后再删除)。当 autoAck 等于 true 时, RabbitMQ 会自动把发送出去的 消息置为确认,然后从内存(或者磁盘)中删除,而不管消费者是否真正地消费到了这些消息。
在ack为false的情况下,消费者获取消息迟迟没有发送消费者确认消息的信号或者消费者断开,怎么办?
当 autoAck 参数置为 false,对于 RabbitMQ 服务端而言,队列中的消息分成了两个部分: 一部分是等待投递给消费者的消息:一部分是己经投递给消费者,但是还没有收到消费者确认信号的消息。 如果 RabbitMQ 一直没有收到消费者的确认信号,并且消费此消息的消费者己经 断开连接,则 RabbitMQ 会安排该消息重新进入队列,等待投递给下一个消费者,当然也有可 能还是原来的那个消费者。RabbitMQ 不会为未确认的消息设置过期时间,它判断此消息是否需要重新投递给消费者的唯一依据是消费该消息的消费者连接是否己经断开,这么设计的原因是 RabbitMQ 允许消费者 消费一条消息的时间可以很久很久。
在消费者接收到消息后,如果想明确拒绝当前的消息而不是确认,那么应该怎么做呢?
RabbitMQ 在 2.0.0 版本开始引入了 Basic .Reject 这个命令,消费者客户端可以调用与其对 应的 channel.basicReject 方法来告诉 RabbitMQ 拒绝这个消息。
//Channel 类中的 basicReject 方法定义如下:
//其中 deliveryTag 可以看作消息的编号 ,它是一个 64 位的长整型值,最大值是 9223372036854775807。如果 //requeue 参数设置为 true,则 RabbitMQ 会重新将这条消息存入 队列,以便可以发送给下一个订阅的消费者;如果 //requeue 参数设置为 false,则 RabbitMQ 立即会把消息从队列中移除,而不会把它发送给新的消费者。
void basicReject(long deliveryTag, boolean requeue) throws IOException
1
2
3
注意:
Basic.Reject 命令一次只能拒绝一条消息 ,如果想要批量拒绝消息 ,则可以使用 Basic.Nack 这个命令
//消费者客户端可以调用 channel.basicNack 方法来实现,方法定 义如下:
//其中 deliveryTag 和 requeue 的含义可以参考 basicReject 方法。 multiple 参数
//设置为 false 则表示拒绝编号为 deliveryT坷的这一条消息,这时候 basicNack 和 basicReject 方法一样; //multiple 参数设置为 true 则表示拒绝 deliveryTag 编号之前所 有未被当前消费者确认的消息。
void basicNack(long deliveryTag, boolean multiple, boolean requeue) throws IOException
1
2
3
4
注意:
将 channel.basicReject 或者 channel.basicNack 中的 requeue 设直为 false,可以启用”死信队列”的功能。死信队列可以通过检测被拒绝或者未送达的消息来追踪问题
请求RabbitMQ重新发送还未被确认的消息?
//Basic.Recover 具备可重入队列的特性
Basic.RecoverOk basicRecover() throws IOException;
Basic.RecoverOk basicRecover(boolean requeue) throws IOException;
1
2
3
channel.basicRecover 方法用来请求 RabbitMQ 重新发送还未被确认的消息。 如果 requeue 参数设置为 true,则未被确认的消息会被重新加入到队列中,这样对于同一条消息 来说,可能会被分配给与之前不同的消费者。如果 requeue 参数设置为 false,那么同一条消 息会被分配给与之前相同的消费者。默认情况下,如果不设置 requeue 这个参数,相当于
channel.basicRecover(true) ,即 requeue 默认为 true
交换器无法根据自身的类型和路由键找到一个符合条件 的队列
当 mandatory 参数设为 true 时,交换器无法根据自身的类型和路由键找到一个符合条件 的队列,那么 RabbitMQ 会调用 Basic.Return 命令将消息返回给生产者。当 mandatory 参 数设置为 false 时,出现上述情形,则消息直接被丢弃
生产者如何获取到没有被正确路由到合适队列的消息呢?
可以通过调用channel.addReturnListener来添加ReturnListener监听器实现。RabbitMQ 会通过 Basic . Return 返回 “mandatory test” 这条消息,之后生产者客户端通过 ReturnListener 监昕到了这个事 件,上面代码的最后输出应该是”Basic.Retum 返回的结果是: mandatory test”
mandatory和immediate参数的区别
mandatory 参数告诉服务器至少将该消息路由到一个队列中, 否则将消息返 回给生产者。 immediate 参数告诉服务器, 如果该消息关联的队列上有消费者, 则立刻投递: 如果所有匹配的队列上都没有消费者,则直接将消息返还给生产者, 不用将消息存入队列而等 待消费者了。
未被路由到的消息应该怎么处理?
发送消息的时候设置mandatory参数,添加ReturnListener监听器接收未被路由到的返回消息
采用备份交换器AE,可以将未被路由的消息存储在RabbitMQ中,通过声明交换器的时候添加AE参数实现,或者通过策略的方式实现,同时使用,前者优先级高,会覆盖掉Policy的设置
备份交换器需要注意?
如果设置的备份交换器不存在,客户端和RabbitMQ服务端都不会有异常出现,此时消息会丢失
如果备份交换器没有绑定任何队列,客户端和RabbitMQ服务端都不会有异常出现,此时消息会丢失
如果备份交换器没有任何匹配的队列,客户端和RabbitMQ服务端都不会有异常出现,此时消息会丢失
如果备份交换器和mandatory参数一起使用,那么mandatory参数无效
怎么为消息设置过期时间TTL?
通过队列属性设置,队列中所有消息都有相同的过期时间,声明队列的时候在channel.queueDeclare加入TTL参数
对消息本身进行单独设置,每条消息的TTL可以不同,在channel.basicPublish方法参数中设置
同时使用以上两种方式设置过期时间,以较小的为准
消息在队列中的生存时间一旦超过设置的TTL值,就变成死信,消费者无法再收到该消息(不是绝对的)
如果不设置 TTL.则表示此消息不会过期;如果将 TTL 设置为 0,则表示除非此时可以直接将消息投递到消费者,否则该消息会被立即丢弃,这个特性可以部分替代 RabbitMQ 3.0 版本之前的 immediate 参数
对过期消息处理?
设置队列 TTL 属性的方法,一旦消息过期,就会从队列中抹去,队列中己过期的消息肯定在队 列头部, RabbitMQ 只要定期从队头开始扫描是否有过期的消息即可,
消息本身进行单独设置,即使消息过期,也不会马上从队列中抹去,因为每条消息是否过期是在即将投递到消费者之前判定的。每条消息的过期时间不同,如果要删除所有过期消息势必要扫描整个队列,所以不如等到此消息即将 被消费时再判定是否过期, 如果过期再进行删除即可。
怎么设置队列的过期时间?
通过 channel . queueDeclare 方法中的 x-expires 参数可以控制队列被自动删除前处 于未使用状态的时间。未使用的意思是队列上没有任何的消费者,队列也没有被重新声明,并且在过期时间段内也未调用过 Basic . Get 命令。
RabbitMQ 会确保在过期时间到达后将队列删除,但是不保障删除的动作有多及时 。在 RabbitMQ 重启后,持久化的队列的过期时间会被重新计算。
什么是死信队列?
DLX,全称为 Dead-Letter-Exchange,可以称之为死信交换器,也有人称之为死信邮箱。当消息在一个队列中变成死信 (dead message) 之后,它能被重新被发送到另一个交换器中,这个交换器就是 DLX,绑定 DLX 的队列就称之为死信队列。
DLX 也是一个正常的交换器,和一般的交换器没有区别,它能在任何的队列上被指定, 实 际上就是设置某个队列的属性。当这个队列中存在死信时 , RabbitMQ 就会自动地将这个消息重新发布到设置的 DLX 上去,进而被路由到另一个队列,即死信队列。
什么是延迟队列?
延迟队列存储的对象是对应的延迟消息,所谓“延迟消息”是指当消息被发送后,并不想让消费者立刻拿到消息,而是等待特定时间后,消费者才能拿到这个消息进行消费
延迟队列应用场景?
订单系统,用延迟队列处理超时订单
用户希望通过手机远程遥控家里的智能设备在指定的时间进行工作。这时候就可以将 用户指令发送到延迟队列,当指令设定的时间到了再将指令推送到智能设备。
持久化?
交换器的持久化
交换器的持久化是通过在声明交换器时将 durable 参数置为 true 实现的,如果交换器不设置持久化,那么在 RabbitMQ 服务重启之后,相关的交换器元数据会丢失, 不过消息不会丢失,只是不能将消息发送到这个交换器中了。对一个长期使用的交换器来说,建议将其置为持久化的。
队列的持久化
队列的持久化是通过在声明队列时将 durable 参数置为 true 实现的,如果队列不设置持久化,那么在 RabbitMQ 服务重启之后,相关队列的元数据会丢失,此时数据也会丢失。
消息的持久化
通过将消息的投递模式 (BasicProperties 中的 deliveryMode 属性)设置为 2 即可实现消息的持久化。
在这段时间内 RabbitMQ 服务节点发生了岩机、重启等异常情况,消息保存还没来得及落盘,那么这些消息将RabbitMQ 实战指南会丢失。这个问题怎么解决呢?
可以引入 RabbitMQ 的镜像队列机制,相当于配置了副本,如果主节点 Cmaster) 在此特殊时间内挂掉,可以自动切换到从节点 Cslave ), 这样有效地保证了高可用性
当消息的生产者将消息发送出去之后,消息到底有没有正确地到达服务器呢?
通过事务机制实现,比较消耗性能
客户端发送 Tx.Select. 将信道置为事务模式;
Broker 回复 Tx. Select-Ok. 确认己将信道置为事务模式:
在发送完消息之后,客户端发送 Tx.Commit 提交事务;
Broker 回复 Tx. Commi t-Ok. 确认事务提交。
通过发送方确认机制实现
消费端对消息的处理?
过推模式或者拉模式的方 式来获取井消费消息,当消费者处理完业务逻辑需要手动确认消息己被接收,这RabbitMQ才能把当前消息从队列中标记清除
如果消费者由于某些原因无法处理当前接收到的消息, 可以通过 channel . basicNack 或者 channel . basicReject 来拒绝掉。
消费端存在的问题?
消息分发
同一个队列拥有多个消费者,会采用轮询的方式分发消息给消费者,若其中有的消费者任务重,有的消费者很快处理完消息,导致进程空闲,这样对导致整体应用吞吐量下降,为了解决上面的问题,用到channel.basicQos 方法允许限制信道上的消费者所能保持的最大未确认消息的数量。Basic.Qos 的使用对于拉模式的消费方式无效.
举例如下:
在订阅消费队列之前,消费端程序调用了 channel.basicQos(5) ,之后订 阅了某个队列进行消费。 RabbitMQ 会保存一个消费者的列表,每发送一条消息都会为对应的消费者计数,如果达到了所设定的上限,那么 RabbitMQ 就不会向这个消费者再发送任何消息。 直到消费者确认了某条消息之后 , RabbitMQ将相应的计数减1,之后消费者可以继续接收消息, 直到再次到达计数上限。这种机制可以类比于 TCP!IP中的”滑动窗口”。
消息顺序性
生产者使用了事务机制可能会破坏消息顺序性
生产者发送消息设置了不同的超时时间,并且设置了死信队列
消息设置了优先级
可以考虑在消息体内添加全局有序标识来实现
弃用QueueingConsumer,Spring提供的RabbitMQ采用的是DefaultConsume
内存溢出,由于某些原因,队列之中堆积了比较多的消息,可能导致消费者客户端内存溢出假死,发生恶性循环,使用 Basic . Qos 来解决,一定要在调用 Basic . Consume 之前调用 Basic.Qos
才能生效。
会拖累同一个connection下的所有信道,使其性能降低
同步递归调用QueueingConsumer会产生死锁
RabbitMQ的自动连接恢复机制不支持QueueingConsumer这种形式
QueueingConsumer不是事件驱动的
消息传输保障?
一般消息中间件的消息传输保障分为三个等级
At most once: 最多一次。消息可能会丢失,但绝不会重复传输。
At least once: 最少一次。消息绝不会丢失,但可能会重复传输。
Exactly once: 恰好一次。每条消息肯定会被传输一次且仅传输一次。
RabbitMQ支持其中的“最多一次”和“最少一次”。
其中”最少一次”投递实现需要考虑 以下这个几个方面的内容:
消息生产者需要开启事务机制或者 publisher confirm 机制,以确保消息可以可靠地传 输到 RabbitMQ 中。
消息生产者需要配合使用 mandatory 参数或者备份交换器来确保消息能够从交换器 路由到队列中,进而能够保存下来而不会被丢弃。
消息和队列都需要进行持久化处理,以确保 RabbitMQ 服务器在遇到异常情况时不会造成消息丢失。
消费者在消费消息的同时需要将 autoAck 设置为 false,然后通过手动确认的方式去 确认己经正确消费的消息,以避免在消费端引起不必要的消息丢失。
“最多一次”的方式就无须考虑以上那些方面,生产者随意发送,消费者随意消费,不过这 样很难确保消息不会丢失。
提高数据可靠性途径?
设置 mandatory 参数或者备份交换器 (immediate 参数己被陶汰);
设置 publisher conflITll机制或者事务;
设置交换器、队列和消息都为持久化;
设置消费端对应的 autoAck 参数为 false 井在消费完消息之后再进行消息确认
————————————————
版权声明:本文为CSDN博主「周周周6688」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/zlt995768025/article/details/81938449
【攻克RabbitMQ】常见问题的更多相关文章
- RabbitMQ的几个常见问题
1. 如何保证消息尽量发送成功? 问题描述: 如果没有启动消费者,重启了RabbitMQ服务,队列和消息都会丢失. 解决方案: 针对这个问题,有以下几个机制可以解决: 生产者确认: 持久化: 手动AC ...
- [Open Source] RabbitMQ 安装与使用
前言 吃多了拉就是队列,吃饱了吐就是栈 使用场景 对操作的实时性要求不高,而需要执行的任务极为耗时:(发送短信,邮件提醒,更新文章阅读计数,记录用户操作日志) 存在异构系统间的整合: 安装 下载 Er ...
- RabbitMQ可靠性投递及高可用集群
可靠性投递: 首先需要明确,效率与可靠性是无法兼得的,如果要保证每一个环节都成功,势必会对消息的收发效率造成影响.如果是一些业务实时一致性要求不是特别高的场合,可以牺牲一些可靠性来换取效率. 要保证消 ...
- centos 7 rabbitmq 3.7.12 erlang 20.3源码安装
1.下载erlang 官网地址 http://www.erlang.org/download 挑选合适的版本 然后 建议20.3运行命令 wget http://erlang.org/download ...
- Spring Cloud Stream消费失败后的处理策略(四):重新入队(RabbitMQ)
应用场景 之前我们已经通过<Spring Cloud Stream消费失败后的处理策略(一):自动重试>一文介绍了Spring Cloud Stream默认的消息重试功能.本文将介绍Rab ...
- RabbitMQ 安装与使用
RabbitMQ 安装与使用 前言 吃多了拉就是队列,吃饱了吐就是栈 使用场景 对操作的实时性要求不高,而需要执行的任务极为耗时:(发送短信,邮件提醒,更新文章阅读计数,记录用户操作日志) 存在异 ...
- rabbitmq集群部署及配置
消息中间件rabbitmq,一般以集群方式部署,主要提供消息的接受和发送,实现各微服务之间的消息异步.本篇将以rabbitmq+HA方式进行部署. 一.原理介绍 rabbitmq是依据erlang的分 ...
- 关于 RabbitMQ 的 Dead-Letters-Queue “死信队列”
来自一个队列的消息可以被当做‘死信’,即被重新发布到另外一个“exchange”去,这样的情况有: 消息被拒绝 (basic.reject or basic.nack) 且带 requeue=fa ...
- CentOS 6.8 源码安装RabbitMQ
一.安装依赖环境 yum install build-essential openssl openssl-devel unixODBC unixODBC-devel make gcc gcc-c++ ...
随机推荐
- 帝国cms 描述和关键词动态获取
之前列表页首页和内容页调用的关键词和描述的字段不一样,所以说需要写好几套模板. 下边这个判断就不用像之前做几套模板了,通过判断获取不一样的字段. $GLOBALS[navinfor] 这个判断的是此页 ...
- python 定义变量
定义变量 什么是变量? 在程序运行过程中,其值可以改变的量 标识符(命令规范) 只能由数字.字母.下划线组成 不能以数字开头 不能是系统关键字 # 导入包import keyword# 打印所有关键 ...
- 把两个object对象合并成一个对象 属性名称相同的变为后面对象的值
object.assign(from,obj)------object.assign(目标对象,被合并的对象)
- 问题:com.alibaba.dubbo.rpc.RpcException: Failed to invoke ......
个人解决流程: 一看到这个问题,下意识想到了是dubbo远程连接的问题,可能是dubbo本身的问题,于是在虚拟机上另外一台dubbo能正常脸上的服务器上重新尝试,还是报相同的错误,并且在dubbo-a ...
- Alpha阶段评审
组别 项目名称 学生互评 助教评分 点评建议 第1组 校园物资共享平台 7.97 6.17 界面较为简洁美观,实现物品信息发布,登录注册和个人信息等功能,交易功能待完善: 博客内容比较完善,有alp ...
- linux图形界面安装
1.问题现象 1.1 startx命令不可用 [root@linuxtest2 ~]# startx 1.3 init 5无法执行完成 [root@linuxtest2 ~]#init 5 2.问题原 ...
- Linux grep命令 -- 三剑客老三
常用选项 -E :开启扩展(Extend)的正则表达式. -i :忽略大小写(ignore case). -v :反过来(invert),只打印没有匹配的,而匹配的反而不打印. -n :显示行号 -w ...
- HAproxy企业应用,TCP/HTTP动静分离
HAProxy的是一个免费的.开源的的tcp/http反向代理工具.负载均衡器,是一个企业非常快速和可靠的安全的解决方案,提供高可用性.高并发性,负载均衡和代理对TCP和基于HTTP的应用程序.它特别 ...
- Zabbix报错:"Zabbix http poller processes more than 75% busy"的解决
一.钉钉收到告警 主机名称:Zabbix服务端-172.28.18.75 IP地址 :127.0.0.1 告警时间:2019.10.22 13:34:39 告警信息:Zabbix http polle ...
- java8学习之Collectors工厂类源码分析与实战
如上一节[http://www.cnblogs.com/webor2006/p/8360232.html]在结尾处谈到的,彻底理解了Collector收集器之后,有必要对其系统Collectors实现 ...