题目大意:给定一个 N 个点的森林,M 个询问,每次询问对于点 u 来说,有多少个点和 u 有相同的 K 级祖先。

题解:线段树合并适合处理子树贡献的问题。

发现要回答这个询问在点 u 处计算很困难,但是在 u 的 k 级祖先处处理询问很简单,即:问对于 v 子树中深度为 k 的节点的个数。因此,采用将询问离线,对于每个点的询问转化到其祖先节点,最后采用线段树合并即可。

代码如下

#include <bits/stdc++.h>
#define mp make_pair
#define pb push_back
using namespace std;
const int maxn=1e5+10; int n,m,ans[maxn];
vector<int> G[maxn];
int f[maxn][21],dep[maxn];
vector<pair<int,int>> q[maxn]; // dep, id void pre(int u,int fa){
dep[u]=dep[fa]+1,f[u][0]=fa;
for(int i=1;i<=20;i++)f[u][i]=f[f[u][i-1]][i-1];
for(auto v:G[u])pre(v,u);
}
int LA(int x,int k){
int t=dep[x]-k;
for(int i=20;~i;i--)if(dep[f[x][i]]>=t)x=f[x][i];
return x;
} struct node{
#define ls(o) t[o].lc
#define rs(o) t[o].rc
int lc,rc,sz;
}t[maxn*20];
int tot,root[maxn];
inline void pushup(int o){
t[o].sz=t[ls(o)].sz+t[rs(o)].sz;
}
void insert(int &o,int l,int r,int pos){
if(!o)o=++tot;
if(l==r){++t[o].sz;return;}
int mid=l+r>>1;
if(pos<=mid)insert(ls(o),l,mid,pos);
else insert(rs(o),mid+1,r,pos);
pushup(o);
}
int merge(int x,int y,int l,int r){
if(!x||!y)return x+y;
if(l==r){t[x].sz+=t[y].sz;return x;}
int mid=l+r>>1;
ls(x)=merge(ls(x),ls(y),l,mid);
rs(x)=merge(rs(x),rs(y),mid+1,r);
return pushup(x),x;
}
int query(int o,int l,int r,int pos){
if(!o)return 0;
if(l==r)return t[o].sz;
int mid=l+r>>1;
if(pos<=mid)return query(ls(o),l,mid,pos);
else return query(rs(o),mid+1,r,pos);
} void dfs(int u){
for(auto v:G[u]){
dfs(v);
root[u]=merge(root[u],root[v],1,n);
}
for(auto p:q[u]){
int d=p.first,id=p.second;
ans[id]=query(root[u],1,n,d)-1;
}
insert(root[u],1,n,dep[u]);
}
void read_and_parse(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&f[i][0]);
if(!f[i][0])continue;
G[f[i][0]].pb(i);
}
for(int i=1;i<=n;i++)if(!f[i][0])pre(i,0);
scanf("%d",&m);
for(int i=1;i<=m;i++){
int v,p;
scanf("%d%d",&v,&p);
int u=LA(v,p);
if(!u)continue;
q[u].pb(mp(dep[v],i));
}
}
void solve(){
for(int i=1;i<=n;i++)if(!f[i][0])dfs(i);
for(int i=1;i<=m;i++)printf("%d ",ans[i]);
}
int main(){
read_and_parse();
solve();
return 0;
}

【CF208E】Blood Cousins的更多相关文章

  1. 【Leetcode_easy】993. Cousins in Binary Tree

    problem 993. Cousins in Binary Tree 参考 1. Leetcode_easy_993. Cousins in Binary Tree; 完

  2. 【leetcode】993. Cousins in Binary Tree

    题目如下: In a binary tree, the root node is at depth 0, and children of each depth k node are at depth  ...

  3. 【LeetCode】993. Cousins in Binary Tree 解题报告(C++ & python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 DFS BFS 日期 题目地址:https://le ...

  4. CF208E Blood Cousins

    Blood Cousins 题目描述 小C喜欢研究族谱,这一天小C拿到了一整张族谱. 小C先要定义一下k-祖先. x的1-祖先指的是x的父亲 x的k-祖先指的是x的(k-1)-祖先的父亲 小C接下来要 ...

  5. 【转】Python 面向对象(初级篇)

    [转]Python 面向对象(初级篇) 51CTO同步发布地址:http://3060674.blog.51cto.com/3050674/1689163 概述 面向过程:根据业务逻辑从上到下写垒代码 ...

  6. 蓝牙Bluetooth技术手册规范下载【转】

    蓝牙Bluetooth技术手册规范下载 http://www.crifan.com/summary_bluetooth_specification_download/ [背景] 之前就已经整理和转帖了 ...

  7. 【237】◀▶IEW-Unit02

    Unit 2 Sport I.状语从句在雅思写作中的运用 公式: 主句+状语从句连接词+从句 =状语从句连接词+从句,主句 1. 时间状语从句 I. when, while, as 1. When+A ...

  8. 【C++】从零开始的CS:GO逆向分析3——写出一个透视

    [C++]从零开始的CS:GO逆向分析3--写出一个透视 本篇内容包括: 1. 透视实现的方法介绍 2. 通过进程名获取进程id和进程句柄 3. 通过进程id获取进程中的模块信息(模块大小,模块地址, ...

  9. Python高手之路【六】python基础之字符串格式化

    Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-3101] This ...

随机推荐

  1. Android开发 互相调用模式之导出Jar包、扩展MainActivity、Java主导

    首先讲导出Jar包,在以前都是用这种方法,但是现在官方不推荐使用此方法,官方推荐导出Aar包 (1)首先创建一个Android空工程 注意:这里选择API 16,因为Unity支持的最低是API 16 ...

  2. Installation failed with message Failed to commit install session 634765663 with command cmd package

    用小米真机测试时,安装app总会提示这个错误两遍,然后再重新安装. 解决办法:去掉这个√.

  3. Redundant Connection

    In this problem, a tree is an undirected graph that is connected and has no cycles. The given input ...

  4. 【转贴】bat脚本基础教程

    bat脚本基础教程 https://www.cnblogs.com/linyfeng/p/8072002.html 自己动手太少了. bat脚本就是DOS批处理脚本,就是将一系列DOS命令按照一定顺序 ...

  5. springmvc默认配置文件

    当在新建的maven web项目的web.xml中直接加入下面的<servlet>和<servlet-mapping>后,直接运行就会出现这个报错,意思就是找不到默认的spri ...

  6. SpringBoot项目打成Jar包时运行

    使用java -jar ***.jar执行jar包的时候,会找jar包中的main()方法. 对于SpringBoot项目的Jar包,在META-INF目录下的MANIFEST.MF文件中,Main- ...

  7. redis在php中实际应用-list

    1.LPUSH Redis Lpush 命令将一个或多个值插入到列表头部. 如果 key 不存在,一个空列表会被创建并执行 LPUSH 操作. 当 key 存在但不是列表类型时,返回一个错误.(在Re ...

  8. Redis: 缓存过期、缓存雪崩、缓存穿透、缓存击穿(热点)、缓存并发(热点)、多级缓存、布隆过滤器

    Redis: 缓存过期.缓存雪崩.缓存穿透.缓存击穿(热点).缓存并发(热点).多级缓存.布隆过滤器 2019年08月18日 16:34:24 hanchao5272 阅读数 1026更多 分类专栏: ...

  9. idea-代码格式化快捷键设置(2019.1版)

    idea默认格式化快捷键是:Ctrl+Alt+L,有时会因其它软件快捷键的冲突导致失灵. 设置方法如下: 1.File -->  Settings... 2. Keymap -> Code ...

  10. This application has no explicit mapping for /error, so you are seeing this as a fallback.

    检查url是否输入正确,要加上之前的mapping映射