ssd_mobilenet_demo
操作系统:windows 10 64位
内存:8G
GPU:Nvidia MX 150
Tensorflow: 1.4
1、安装python
Anaconda3-5.0.1 ,默认python版本(3.6.3)
2、安装tensorflow
pip install --upgrade tensorflow
conda install pip #更新pip
pip install --upgrade tensorflow-gpu
CUDA® Toolkit 8.0, 需要注意最新版9.1不支持tensorflow 1.4版本;
cuDNN v6.0,7.0不支持tensorflow 1.4版本,现在cuDNN需要先注册成为NVIDIA开发者,下载后将cuDNN中对应文件夹下的.dll文件分别复制到CUDA安装目录对应文件夹下;
对应的显卡驱动,如果驱动较新,在安装CUDA的时候会有提示可能不兼容,可以无视。
3、测试gpu版安装好了没有
improt tensorflow as tf
hello = tf.constant('hello')
sess = tf.Session()
print(sess.run(hello)) 当输出hello则装好tensorflow from tensorflow.python.client import device_lib
print(device_lib.list_local_devices()) 当输出:
Sample Output
[name: "/cpu:0" device_type: "CPU" memory_limit:
name: "/gpu:0" device_type: "GPU" .............GeForce GTX 1070
4、下载api
https://github.com/tensorflow/models
5、protobuf配置
https://github.com/google/protobuf/releases 网站中选择windows 版本(最下面),解压后将bin文件夹中的【protoc.exe】放到C:\Windows
在models\research\目录下打开命令行窗口,输入:
# From tensorflow/models/
protoc object_detection/protos/*.proto --python_out=.
在这一步有时候会出错,可以尝试把/*.proto 这部分改成文件夹下具体的文件名,一个一个试,每运行一个,文件夹下应该出现对应的.py结尾的文件。不报错即可。
6、环境变量
models/research/ 及 models/research/slim 添加进环境变量
7、测试环境
python object_detection/builders/model_builder_test.py
注意 :如果出现no model name object_api这个东东,就在D:\anaconda\anaconda3.4.2.0\Lib\site-packages目录下面新建一个my_objection.pth文件,文件内容就是这两个路径,如下图:
8、object_detection_tutorial.ipynb
代码简化了一些。
# coding: utf-8
import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image if tf.__version__ < '1.4.0':
raise ImportError('Please upgrade your tensorflow installation to v1.4.* or later!') # This is needed to display the images.
get_ipython().magic('matplotlib inline') # This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..") from utils import label_map_util
from utils import visualization_utils as vis_util # 下载模型名,设置对应的参数
MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/' # 训练好的模型,用来检测
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb' # 标签文件,记录了哪些标签需要识别
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt') # 类别数目,根据实际修改
NUM_CLASSES = 90 # ## 下载上面说的模型(不用改)
opener = urllib.request.URLopener()
opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
file_name = os.path.basename(file.name)
if 'frozen_inference_graph.pb' in file_name:
tar_file.extract(file, os.getcwd()) #将训练完的载入内存(不用改)
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='') # ## 载入标签map(不用改)
# Label maps map indices to category names, so that when our convolution network predicts `5`,
we know that this corresponds to `airplane`.
Here we use internal utility functions, but anything that returns a dictionary mapping integers to appropriate string labels would be fine label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories) def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8) """
检测部分
"""
# 目标文件夹名
PATH_TO_TEST_IMAGES_DIR = 'test_images'
# 源码中test_images文件夹下就两张image,名字分别为image1.jpg和image2.jpg
# 如果想用自己的image,有5张图片,分别为hello1.jpg.....hello5.jpg可以改成:
# TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'hello{}.jpg'.format(i)) for i in range(1, 6) ]
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3) ] # 设置输出图像的英尺
IMAGE_SIZE = (12, 8) #运行,进行检测
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
# Definite input and output Tensors for detection_graph
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
for image_path in TEST_IMAGE_PATHS:
image = Image.open(image_path)
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
image_np = load_image_into_numpy_array(image)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
plt.figure(figsize=IMAGE_SIZE)
plt.imshow(image_np)
ssd_mobilenet_demo的更多相关文章
随机推荐
- Docker image 和 volume 的关系
image :镜像 虚拟机容器需要加载image才能运行,镜像中打包了构建好服务的运行环境. Docker images are the basis of containers. An Image i ...
- 20190905 Lombok常用注解
Lombok常用注解 val 用于声明类型,将从初始化表达式推断出类型,仅适用于局部变量和foreach循环,而不适用于字段.声明的局部变量为final变量. Java自带类型推断随着JDK版本提升越 ...
- python列表-增强的赋值操作
增强赋值公式 (1) (2) (3) (4)
- vps配置ipv6地址
1.修改配置文件 vim /etc/network/interfaces 2.添加以下内容 auto he-ipv6 iface he-ipv6 inet6 v4tunnel address 2001 ...
- SQL的“增删改”
结构语言分类 DDL(数据定义语言) create drop alter 创建删除以及修改数据库,表,存储过程,触发器,索引.... DML(数据操作语言) insert delete ...
- Lucene 4.6.1 java.lang.IllegalStateException: TokenStream contract violation
这是旧代码在新版本Lucene中出现的异常,异常如下: Exception in thread "main" java.lang.IllegalStateException: To ...
- windows 端 nginx怎么配置 虚拟机的fastdfs文件管理系统
FastDFS的安装这里不演示 nginx.conf #图片服务 upstream img_server_pool{ server 192.168.133.131:80 weight=10; } #学 ...
- [BZOJ 3295] [luogu 3157] [CQOI2011]动态逆序对(树状数组套权值线段树)
[BZOJ 3295] [luogu 3157] [CQOI2011] 动态逆序对 (树状数组套权值线段树) 题面 给出一个长度为n的排列,每次操作删除一个数,求每次操作前排列逆序对的个数 分析 每次 ...
- Mock接口数据 = mock服务 + iptable配置
一.mock接口数据应用场景: 1.测试接口A,A接口代码中调用其他服务的B接口,由于开发排期.测试环境不通等原因,依赖接口不可用 2.测试异常情况,依赖接口B返回的数据格式不对.返回None.超时等 ...
- 初入vue.js(1)
本文章属于个人在学习vue的随笔,留作与大家分享,技术交流之用,如果有错误,请大家多多指正.谢谢 首先说一下vue的使用方式: vue的使用方式一共有两种,第一种是直接在官网上下载vue.js的文件, ...