luogu P1397 [NOI2013]矩阵游戏
题目中那两个递推式显然可以写成矩乘的形式,然后十进制快速幂即可.这里不再赘述
只有两个递推式,我们可以考虑一波推式子,首先第一行的元素应该分别是\(1,a+b,a^2+ab+b,a^3+a^2b+ab+b...a^{m-1}+b\sum_{i=0}^{m-2}a^i\)
然后这样子推下去,第二行最后一个元素为\(a^{2(m-1)}c+a^{m-1}bc\sum_{i=0}^{m-2}a^i+a^{m-1}d+b\sum_{i=0}^{m-2}a^i\)
同理,第三行最后一个元素为\(a^{3(m-1)}c^2+a^{2(m-1)}bc^2\sum_{i=0}^{m-2}a^i+a^{2(m-1)}cd+a^{m-1}bc\sum_{i=0}^{m-2}a^i+a^{m-1}d+b\sum_{i=0}^{m-2}a^i\)
...
所以我们可以归纳得到\(f_{n,m}\)为$$a{n(m-1)}c{n-1}+a{m-1}d\sum_{i=0}{n-2}(a{m-1}c)i+b\sum_{i=0}{m-2}ai\sum_{j=0}{n-1}(a{m-1}c)^j$$
然后等比数列求和公式一套就完事了
注意\(a=1,c=1\)的情况
// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define LL long long
#define uLL unsigned long long
#define il inline
using namespace std;
const int N=1e6+10,mod=1e9+7;
il int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int fpow(int a,int b){int an=1;while(b){if(b&1) an=1ll*an*a%mod;a=1ll*a*a%mod,b>>=1;} return an;}
int inv(int a){return fpow(a,mod-2);}
int qh(int a,int n){return a==1?n:1ll*(1-fpow(a,n)+mod)*inv(1-a+mod)%mod;}
char cc[N],ss[N];
int l1,l2,n,m,nn,mm,a,b,c,d,pa,sa,sb,sc,ans,ac;
int main()
{
scanf("%s%s",cc+1,ss+1);
l1=strlen(cc+1),l2=strlen(ss+1);
a=rd()%mod,b=rd()%mod,c=rd()%mod,d=rd()%mod;
for(int i=1;i<=l1;++i) n=(1ll*n*10+cc[i]-'0')%(mod-1),nn=(1ll*nn*10+cc[i]-'0')%mod;
for(int i=1;i<=l2;++i) m=(1ll*m*10+ss[i]-'0')%(mod-1),mm=(1ll*mm*10+ss[i]-'0')%mod;
pa=fpow(a,(m-1+mod-1)%(mod-1));
sa=a>1?qh(a,m-1):mm-1;
ac=1ll*pa*c%mod;
sb=ac>1?qh(ac,n-1):nn-1;
sc=ac>1?qh(ac,n):nn;
ans=1ll*fpow(c,(n-1+mod-1)%(mod-1))*fpow(pa,n)%mod;
if(n>1) ans=(ans+1ll*pa*sb%mod*d%mod)%mod;
ans=(ans+1ll*sc*sa%mod*b%mod)%mod;
printf("%d\n",ans);
return 0;
}
luogu P1397 [NOI2013]矩阵游戏的更多相关文章
- P1397 [NOI2013]矩阵游戏(递推)
P1397 [NOI2013]矩阵游戏 一波化式子,$f[1][m]=a^{m-1}+b\sum_{i=0}^{m-2}a^i$,用快速幂+逆元求等比数列可以做到$logm$ 设$v=a^{m-1}, ...
- 洛谷P1397 [NOI2013]矩阵游戏
矩阵快速幂+费马小定理 矩阵也是可以跑费马小定理的,但是要注意这个: (图是盗来的QAQ) 就是说如果矩阵a[i][i]都是相等的,那么就是mod p 而不是mod p-1了 #include< ...
- 洛谷P1397 [NOI2013]矩阵游戏(十进制矩阵快速幂)
题意 题目链接 Sol 感觉做这题只要对矩阵乘法理解的稍微一点就能做出来对于每一行构造一个矩阵A = a 1 0 b列与列之间的矩阵为B = c 1 0 d最终答案为$A^{n - ...
- P1397 [NOI2013]矩阵游戏
传送门 首先显然可以矩乘快速幂然后 $T$ 飞 看一眼题解发现因为这一题矩阵的特殊性所以可以对矩阵的次数欧拉降幂 然而我并不懂证明,所以我选择暴力乱搞的做法 十进制快速幂,然后注意一下常数,还有矩阵乘 ...
- bzoj 3240: [Noi2013]矩阵游戏 矩阵乘法+十进制快速幂+常数优化
3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 613 Solved: 256[Submit][Status] ...
- BZOJ 3240: [Noi2013]矩阵游戏
3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1586 Solved: 698[Submit][Status ...
- BZOJ 3240([Noi2013]矩阵游戏-费马小定理【矩阵推论】-%*s-快速读入)
3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec Memory Limit: 256 MB Submit: 123 Solved: 73 [ Submit][ St ...
- (十进制高速幂+矩阵优化)BZOJ 3240 3240: [Noi2013]矩阵游戏
题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=3240 3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec M ...
- 【bzoj3240 && 洛谷P1397】矩阵游戏[NOI2013](矩阵乘法+卡常)
题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3240 这道题其实有普通快速幂+费马小定理的解法……然而我太弱了,一开始只想到了矩阵乘法的 ...
随机推荐
- jodd cache实现缓存超时
public class JoddCache { private static final int CACHE_SIZE = 2; private final static Cache<Obje ...
- js for循环中i++与++i有什么区别
平时都是这样写的for循环, 1 2 3 for(var i = 0; i < 20 ; i++){ .... } 但我看有的人这样写 for (var i = 0; ...
- antd form表单一行多个组件并对其校验
一行一个标签对应多个输入组件,这个需求很常见但在官方例子没看到合适的,因为官方建议: 注意:一个 Form.Item 建议只放一个被 getFieldDecorator 装饰过的 child,当有多个 ...
- linux 上使用libxls读和使用xlslib写excel的方法简介
读取excel文件:libxls-1.4.0.zip下载地址:http://sourceforge.net/projects/libxls/安装方法: ./configure make make ...
- jQuery file upload里面的_create的调用和_initEventHandlers的调用
首先是jquery.ui.widget.js中_createWidget方法内部调用 this._create(); this._trigger( "create", null, ...
- visualSVN提交强制添加注释
Visual SVN Server下 右键项目 “所有任务”>“Manage Hooks” >选中Pre-commit hook然后edit编辑,添加如下代码 @echo off set ...
- windows 使用Docker Desktop 使用国内镜像
===新增一些比较给力的镜像=== 1.中科大镜像加速地址 https://docker.mirrors.ustc.edu.cn 2.阿里云镜像服务 ========= 原本在配置项中添加了:国内镜像 ...
- Java面试题集(71-85)
Java程序员面试题集(71-85) 摘要:这一部分主要包括了UML(统一建模语言).面向对象的设计原则(六原则一法则).GoF设计模式.企业级设计模式.JDBC(Java数据库连接).XML(可扩展 ...
- oracle数据库表空间创建&导入&导出
1.表空间创建 --删除表空间 drop tablespace EVPBDMGIS including contents and datafiles; --删除用户 drop user EVPBDMG ...
- 第五周课程总结&实验报告(三)
实验三 String类的应用 实验目的 掌握类String类的使用: 学会使用JDK帮助文档: 实验内容 1.已知字符串:"this is a test of java".按要求执 ...