Keras Model Sequential模型接口
Sequential 模型 API
在阅读这片文档前,请先阅读 Keras Sequential 模型指引。
Sequential 模型方法
compile
compile(optimizer, loss=None, metrics=None, loss_weights=None, sample_weight_mode=None, weighted_metrics=None, target_tensors=None)
用于配置训练模型。
参数
- optimizer: 字符串(优化器名)或者优化器对象。详见 optimizers。
- loss: 字符串(目标函数名)或目标函数。详见 losses。 如果模型具有多个输出,则可以通过传递损失函数的字典或列表,在每个输出上使用不同的损失。模型将最小化的损失值将是所有单个损失的总和。
- metrics: 在训练和测试期间的模型评估标准。通常你会使用
metrics = ['accuracy']
。 要为多输出模型的不同输出指定不同的评估标准,还可以传递一个字典,如metrics = {'output_a':'accuracy'}
。 - loss_weights: 指定标量系数(Python浮点数)的可选列表或字典,用于加权不同模型输出的损失贡献。 模型将要最小化的损失值将是所有单个损失的加权和,由
loss_weights
系数加权。 如果是列表,则期望与模型的输出具有 1:1 映射。 如果是张量,则期望将输出名称(字符串)映射到标量系数。 - sample_weight_mode: 如果你需要执行按时间步采样权重(2D 权重),请将其设置为
temporal
。 默认为None
,为采样权重(1D)。如果模型有多个输出,则可以通过传递 mode 的字典或列表,以在每个输出上使用不同的sample_weight_mode
。 - weighted_metrics: 在训练和测试期间,由 sample_weight 或 class_weight 评估和加权的度量标准列表。
- target_tensors: 默认情况下,Keras 将为模型的目标创建一个占位符,在训练过程中将使用目标数据。相反,如果你想使用自己的目标张量(反过来说,Keras 在训练期间不会载入这些目标张量的外部 Numpy 数据),您可以通过
target_tensors
参数指定它们。它应该是单个张量(对于单输出 Sequential 模型)。 - **kwargs: 当使用 Theano/CNTK 后端时,这些参数被传入
K.function
。当使用 TensorFlow 后端时,这些参数被传递到tf.Session.run
。
异常
- ValueError: 如果
optimizer
,loss
,metrics
或sample_weight_mode
这些参数不合法。
fit
fit(x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None)
以固定数量的轮次(数据集上的迭代)训练模型。
参数
- x: 训练数据的 Numpy 数组。 如果模型中的输入层被命名,你也可以传递一个字典,将输入层名称映射到 Numpy 数组。 如果从本地框架张量馈送(例如 TensorFlow 数据张量)数据,x 可以是
None
(默认)。 - y: 目标(标签)数据的 Numpy 数组。 如果模型中的输出层被命名,你也可以传递一个字典,将输出层名称映射到 Numpy 数组。 如果从本地框架张量馈送(例如 TensorFlow 数据张量)数据,y 可以是
None
(默认)。 - batch_size: 整数或
None
。每次提度更新的样本数。如果未指定,默认为 32. - epochs: 整数。训练模型迭代轮次。一个轮次是在整个
x
或y
上的一轮迭代。请注意,与initial_epoch
一起,epochs
被理解为 「最终轮次」。模型并不是训练了epochs
轮,而是到第epochs
轮停止训练。 - verbose: 0, 1 或 2。日志显示模式。 0 = 安静模式, 1 = 进度条, 2 = 每轮一行。
- callbacks: 一系列的
keras.callbacks.Callback
实例。一系列可以在训练时使用的回调函数。详见 callbacks。 - validation_split: 在 0 和 1 之间浮动。用作验证集的训练数据的比例。模型将分出一部分不会被训练的验证数据,并将在每一轮结束时评估这些验证数据的误差和任何其他模型指标。验证数据是混洗之前
x
和y
数据的最后一部分样本中。 - validation_data: 元组
(x_val,y_val)
或元组(x_val,y_val,val_sample_weights)
,用来评估损失,以及在每轮结束时的任何模型度量指标。模型将不会在这个数据上进行训练。这个参数会覆盖validation_split
。 - shuffle: 布尔值(是否在每轮迭代之前混洗数据)或者 字符串 (
batch
)。batch
是处理 HDF5 数据限制的特殊选项,它对一个 batch 内部的数据进行混洗。当steps_per_epoch
非None
时,这个参数无效。 - class_weight: 可选的字典,用来映射类索引(整数)到权重(浮点)值,用于加权损失函数(仅在训练期间)。这可能有助于告诉模型 「更多关注」来自代表性不足的类的样本。
- sample_weight: 训练样本的可选 Numpy 权重数组,用于对损失函数进行加权(仅在训练期间)。您可以传递与输入样本长度相同的平坦(1D)Numpy 数组(权重和样本之间的 1:1 映射),或者在时序数据的情况下,可以传递尺寸为
(samples, sequence_length)
的 2D 数组,以对每个样本的每个时间步施加不同的权重。在这种情况下,你应该确保在compile()
中指定sample_weight_mode="temporal"
。 - initial_epoch: 开始训练的轮次(有助于恢复之前的训练)。
- steps_per_epoch: 在声明一个轮次完成并开始下一个轮次之前的总步数(样品批次)。使用 TensorFlow 数据张量等输入张量进行训练时,默认值
None
等于数据集中样本的数量除以 batch 的大小,如果无法确定,则为 1。 - validation_steps: 只有在指定了
steps_per_epoch
时才有用。停止前要验证的总步数(批次样本)。
返回
一个 History
对象。其 History.history
属性是连续 epoch 训练损失和评估值,以及验证集损失和评估值的记录(如果适用)。
异常
- RuntimeError: 如果模型从未编译。
- ValueError: 在提供的输入数据与模型期望的不匹配的情况下。
evaluate
evaluate(x=None, y=None, batch_size=None, verbose=1, sample_weight=None, steps=None)
在测试模式,返回误差值和评估标准值。
计算逐批次进行。
参数
- x: 训练数据的 Numpy 数组。 如果模型中的输入层被命名,你也可以传递一个字典,将输入层名称映射到 Numpy 数组。 如果从本地框架张量馈送(例如 TensorFlow 数据张量)数据,x 可以是
None
(默认)。 - y: 目标(标签)数据的 Numpy 数组。 如果模型中的输出层被命名,你也可以传递一个字典,将输出层名称映射到 Numpy 数组。 如果从本地框架张量馈送(例如 TensorFlow 数据张量)数据,y 可以是
None
(默认)。 - batch_size: 整数或
None
。每次提度更新的样本数。如果未指定,默认为 32. - verbose: 0, 1。日志显示模式。0 = 安静模式, 1 = 进度条。
- sample_weight: 训练样本的可选 Numpy 权重数组,用于对损失函数进行加权(仅在训练期间)。 您可以传递与输入样本长度相同的平坦(1D)Numpy 数组(权重和样本之间的 1:1 映射),或者在时序数据的情况下,可以传递尺寸为
(samples, sequence_length)
的 2D 数组,以对每个样本的每个时间步施加不同的权重。在这种情况下,你应该确保在compile()
中指定sample_weight_mode="temporal"
。 - steps: 整数或
None
。 声明评估结束之前的总步数(批次样本)。默认值None
。
返回
标量测试误差(如果模型只有单个输出且没有评估指标)或标量列表(如果模型具有多个输出和/或指标)。 属性 model.metrics_names
将提供标量输出的显示标签。
predict
predict(x, batch_size=None, verbose=0, steps=None)
为输入样本生成输出预测。
计算逐批次进行。
参数
- x: 输入数据,Numpy 数组(或者如果模型有多个输入,则为 Numpy 数组列表)。
- batch_size: 整数。如未指定,默认为 32。
- verbose: 日志显示模式,0 或 1。
- steps: 声明预测结束之前的总步数(批次样本)。默认值
None
。
返回
预测的 Numpy 数组。
异常
- ValueError: 如果提供的输入数据与模型的期望数据不匹配,或者有状态模型收到的数量不是批量大小的倍数。
train_on_batch
train_on_batch(x, y, sample_weight=None, class_weight=None)
一批样品的单次梯度更新。
Arguments
- x: 训练数据的 Numpy 数组,如果模型具有多个输入,则为 Numpy 数组列表。如果模型中的所有输入都已命名,你还可以传入输入名称到 Numpy 数组的映射字典。
- y: 目标数据的 Numpy 数组,如果模型具有多个输入,则为 Numpy 数组列表。如果模型中的所有输出都已命名,你还可以传入输出名称到 Numpy 数组的映射字典。
- sample_weight: 训练样本的可选 Numpy 权重数组,用于对损失函数进行加权(仅在训练期间)。 您可以传递与输入样本长度相同的平坦(1D)Numpy 数组(权重和样本之间的 1:1 映射),或者在时序数据的情况下,可以传递尺寸为
(samples, sequence_length)
的 2D 数组,以对每个样本的每个时间步施加不同的权重。在这种情况下,你应该确保在compile()
中指定sample_weight_mode="temporal"
。 - class_weight: 可选的字典,用来映射类索引(整数)到权重(浮点)值,用于加权损失函数(仅在训练期间)。这可能有助于告诉模型 「更多关注」来自代表性不足的类的样本。
返回
标量训练误差(如果模型只有单个输出且没有评估指标)或标量列表(如果模型具有多个输出和/或指标)。 属性 model.metrics_names
将提供标量输出的显示标签。
test_on_batch
test_on_batch(x, y, sample_weight=None)
在一批样本上评估模型。
参数
- x: 训练数据的 Numpy 数组,如果模型具有多个输入,则为 Numpy 数组列表。如果模型中的所有输入都已命名,你还可以传入输入名称到 Numpy 数组的映射字典。
- y: 目标数据的 Numpy 数组,如果模型具有多个输入,则为 Numpy 数组列表。如果模型中的所有输出都已命名,你还可以传入输出名称到 Numpy 数组的映射字典。
- sample_weight: 训练样本的可选 Numpy 权重数组,用于对损失函数进行加权(仅在训练期间)。 您可以传递与输入样本长度相同的平坦(1D)Numpy 数组(权重和样本之间的 1:1 映射),或者在时序数据的情况下,可以传递尺寸为
(samples, sequence_length)
的 2D 数组,以对每个样本的每个时间步施加不同的权重。在这种情况下,你应该确保在compile()
中指定sample_weight_mode="temporal"
。
返回
标量测试误差(如果模型只有单个输出且没有评估指标)或标量列表(如果模型具有多个输出和/或指标)。 属性 model.metrics_names
将提供标量输出的显示标签。
predict_on_batch
predict_on_batch(x)
返回一批样本的模型预测值。
参数
- x: 输入数据,Numpy 数组或列表(如果模型有多输入)。
返回
预测值的 Numpy 数组。
fit_generator
fit_generator(generator, steps_per_epoch=None, epochs=1, verbose=1, callbacks=None, validation_data=None, validation_steps=None, class_weight=None, max_queue_size=10, workers=1, use_multiprocessing=False, shuffle=True, initial_epoch=0)
使用 Python 生成器或 Sequence
实例逐批生成的数据,按批次训练模型。
生成器与模型并行运行,以提高效率。 例如,这可以让你在 CPU 上对图像进行实时数据增强,以在 GPU 上训练模型。
keras.utils.Sequence
的使用可以保证数据的顺序, 以及当 use_multiprocessing=True
时 ,保证每个输入在每个 epoch 只使用一次。
参数
- generator: 一个生成器或 Sequence (
keras.utils.Sequence
) 对象的实例,以避免在使用多进程时出现重复数据。 生成器的输出应该为以下之一:- 一个
(inputs, targets)
元组 - 一个
(inputs, targets, sample_weights)
元组。 这个元组(生成器的单个输出)表示一个独立批次。因此,此元组中的所有数组必须具有相同的长度(等于此批次的大小)。不同的批次可能具有不同的大小。例如,如果数据集的大小不能被批量大小整除,则最后一批时期通常小于其他批次。生成器将无限地在数据集上循环。当运行到第steps_per_epoch
时,记一个 epoch 结束。
- 一个
- steps_per_epoch: 整数。在声明一个 epoch 完成并开始下一个 epoch 之前从
generator
产生的总步数(批次样本)。它通常应该等于你的数据集的样本数量除以批量大小。可选参数Sequence
:如果未指定,将使用len(generator)
作为步数。 - epochs: 整数,数据的迭代总轮数。一个 epoch 是对所提供的整个数据的一轮迭代,由
steps_per_epoch
所定义。请注意,与initial_epoch
一起,参数epochs
应被理解为 「最终轮数」。模型并不是训练了epochs
轮,而是到第epochs
轮停止训练。 - verbose: 日志显示模式。0,1 或 2。0 = 安静模式,1 = 进度条,2 = 每轮一行。
- callbacks:
keras.callbacks.Callback
实例列表。在训练时调用的一系列回调。详见 callbacks。 - validation_data: 它可以是以下之一:
- 验证数据的生成器或
Sequence
实例 - 一个
(inputs, targets)
元组 - 一个
(inputs, targets, sample_weights)
元组。
- 验证数据的生成器或
- validation_steps: 仅当
validation_data
是一个生成器时才可用。 每个 epoch 结束时验证集生成器产生的步数。它通常应该等于你的数据集的样本数量除以批量大小。可选参数Sequence
:如果未指定,将使用len(generator)
作为步数。 - class_weight: 可选的字典,用来映射类索引(整数)到权重(浮点)值,用于加权损失函数(仅在训练期间)。这可能有助于告诉模型 「更多关注」来自代表性不足的类的样本。
- max_queue_size: 整数。生成器队列的最大尺寸。如果未指定,
max_queue_size
将默认为 10。 - workers: 整数。使用基于进程的多线程时启动的最大进程数。如果未指定,
worker
将默认为 1。如果为 0,将在主线程上执行生成器。 - use_multiprocessing: 如果 True,则使用基于进程的多线程。如果未指定,
use_multiprocessing
将默认为False
。请注意,因为此实现依赖于多进程,所以不应将不可传递的参数传递给生成器,因为它们不能被轻易地传递给子进程。 - shuffle: 布尔值。是否在每轮迭代之前打乱 batch 的顺序。只能与
Sequence
(keras.utils.Sequence
) 实例同用。在steps_per_epoch
不为None
是无效果。 - initial_epoch: 整数。开始训练的轮次(有助于恢复之前的训练)。
返回
一个 History
对象。其 History.history
属性是连续 epoch 训练损失和评估值,以及验证集损失和评估值的记录(如果适用)。
异常
- ValueError: 如果生成器生成的数据格式不正确。
例子
def generate_arrays_from_file(path):
while True:
with open(path) as f:
for line in f:
# 从文件中的每一行生成输入数据和标签的 numpy 数组
x1, x2, y = process_line(line)
yield ({'input_1': x1, 'input_2': x2}, {'output': y}) model.fit_generator(generate_arrays_from_file('/my_file.txt'),
steps_per_epoch=10000, epochs=10)
evaluate_generator
evaluate_generator(generator, steps=None, max_queue_size=10, workers=1, use_multiprocessing=False, verbose=0)
在数据生成器上评估模型。
这个生成器应该返回与 test_on_batch
所接收的同样的数据。
参数
- generator: 生成器,生成 (inputs, targets) 或 (inputs, targets, sample_weights),或 Sequence (
keras.utils.Sequence
) 对象的实例,以避免在使用多进程时出现重复数据。 - steps: 在停止之前,来自
generator
的总步数 (样本批次)。 可选参数Sequence
:如果未指定,将使用len(generator)
作为步数。 - max_queue_size: 生成器队列的最大尺寸。
- workers: 整数。使用基于进程的多线程时启动的最大进程数。如果未指定,
worker
将默认为 1。如果为 0,将在主线程上执行生成器。 - use_multiprocessing: 如果 True,则使用基于进程的多线程。 请注意,因为此实现依赖于多进程,所以不应将不可传递的参数传递给生成器,因为它们不能被轻易地传递给子进程。
- verbose:日志显示模式,0 或 1。
返回
标量测试误差(如果模型只有单个输出且没有评估指标)或标量列表(如果模型具有多个输出和/或指标)。 属性 model.metrics_names
将提供标量输出的显示标签。
异常
- ValueError: 如果生成器生成的数据格式不正确。
predict_generator
predict_generator(generator, steps=None, max_queue_size=10, workers=1, use_multiprocessing=False, verbose=0)
为来自数据生成器的输入样本生成预测。
这个生成器应该返回与 predict_on_batch
所接收的同样的数据。
参数
- generator: 返回批量输入样本的生成器,或 Sequence (
keras.utils.Sequence
) 对象的实例,以避免在使用多进程时出现重复数据。 - steps: 在停止之前,来自
generator
的总步数 (样本批次)。 可选参数Sequence
:如果未指定,将使用len(generator)
作为步数。 - max_queue_size: 生成器队列的最大尺寸。
- workers: 整数。使用基于进程的多线程时启动的最大进程数。如果未指定,
worker
将默认为 1。如果为 0,将在主线程上执行生成器。 - use_multiprocessing: 如果 True,则使用基于进程的多线程。 请注意,因为此实现依赖于多进程,所以不应将不可传递的参数传递给生成器,因为它们不能被轻易地传递给子进程。
- verbose: 日志显示模式, 0 或 1。
返回
预测值的 Numpy 数组。
异常
- ValueError: 如果生成器生成的数据格式不正确。
get_layer
get_layer(name=None, index=None)
根据名称(唯一)或索引值查找网络层。
如果同时提供了 name
和 index
,则 index
将优先。
根据网络层的名称(唯一)或其索引返回该层。索引是基于水平图遍历的顺序(自下而上)。
参数
- name: 字符串,层的名字。
- index: 整数,层的索引。
返回
一个层实例。
异常
- ValueError: 如果层的名称或索引不正确。
Keras Model Sequential模型接口的更多相关文章
- Python机器学习笔记:深入学习Keras中Sequential模型及方法
Sequential 序贯模型 序贯模型是函数式模型的简略版,为最简单的线性.从头到尾的结构顺序,不分叉,是多个网络层的线性堆叠. Keras实现了很多层,包括core核心层,Convolution卷 ...
- 深入学习Keras中Sequential模型及方法
https://www.cnblogs.com/wj-1314/p/9579490.html
- mnist手写数字识别——深度学习入门项目(tensorflow+keras+Sequential模型)
前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型 ...
- keras系列︱Sequential与Model模型、keras基本结构功能(一)
引自:http://blog.csdn.net/sinat_26917383/article/details/72857454 中文文档:http://keras-cn.readthedocs.io/ ...
- 【Keras学习】Sequential模型
序贯(Sequential)模型 序贯模型是多个网络层的线性堆叠,也就是“一条路走到黑”. 可以通过向Sequential模型传递一个layer的list来构造该模型: from keras.mode ...
- Keras之序贯(Sequential)模型
序贯模型(Sequential) 序贯模型是多个网络层的线性堆叠. 可以通过向Sequential模型传递一个layer的list来构造该模型: from Keras.models import Se ...
- keras模块学习之Sequential模型学习笔记
本笔记由博客园-圆柱模板 博主整理笔记发布,转载需注明,谢谢合作! Sequential是多个网络层的线性堆叠 可以通过向Sequential模型传递一个layer的list来构造该模型: from ...
- Problem after converting keras model into Tensorflow pb - 将keras模型转换为Tensorflow pb后的问题
I'm using keras 2.1.* with tensorflow 1.13.* backend. I save my model during training with .h5 forma ...
- keras开发成sklearn接口
我们可以通过包装器将Sequential模型(仅有一个输入)作为Scikit-Learn工作流的一部分,相关的包装器定义在keras.wrappers.scikit_learn.py中: 这里有两个包 ...
随机推荐
- ROC曲线的概念和意义
ROC曲线 受试者工作特征曲线 (receiver operating characteristic curve,简称ROC曲线),又称为感受性曲线(sensitivity curve).得此名的原因 ...
- oracle服务的一些问题,先发2个,以后慢慢添加~~
OracleOraDb11g_home1TNSLister服务启动后停止 解决办法: 1. 修改文件C:\app\zhuwei\product\11.1.0\db_1\NETWORK\ADMIN\li ...
- python使用sqlmap API检测SQL注入
0x00前言: 大家都知道sqlmap是非常强大的sql注入工具,最近发现他有个sqlmap API,上网查了一下.发现这是 sqlmap的微端.(可以叫做sqlmap在线检测sql注入= =) 0x ...
- 浅析 .Net Core中Json配置的自动更新
Pre 很早在看 Jesse 的Asp.net Core快速入门的课程的时候就了解到了在Asp .net core中,如果添加的Json配置被更改了,是支持自动重载配置的,作为一名有着严重" ...
- 如何扩展分布式日志组件(Exceptionless)的Webhook事件通知类型?
写在前面 从上一篇博客高并发.低延迟之C#玩转CPU高速缓存(附示例)到现在又有几个月没写博客了,啥也不说,变得越来越懒了,懒惰产生了拖延后遗症. 最近一周升级了微服务项目使用的分布式日志组件Exce ...
- 微服务架构 - SpringCloud整合分布式服务跟踪zipkin
1.zipkin zipkin是Twitter的一个开源项目,它基于Google Dapper实现.我们可以使用它来收集各个服务器上请求链路的跟踪数据,并通过它提供的REST API接口来辅助我们查询 ...
- Android:JNI与NDK(一)
友情提示:欢迎关注本人公众号,那里有更好的阅读体验以及第一时间获取最新文章 本篇目录 以下举例代码均来自:NDK示例代码 一.前言 安卓开发中很多场景需要用到NDK来开发,比如,音视频的渲染,图像的底 ...
- 分享自己写的一个.net方法缓存源码
在服务器性能优化中,我们更多的是要考虑到缓存的使用,分享一个自己编写的方法缓存的框架,使用非常方便.话不多说,先上使用例子: 1.定义要使用缓存的类及方法: public class Example ...
- BFS(广度优先搜索)
简介 BFS的过程是首先访问起始结点v,接着访问顶点v的所有未被访问的邻接结点,然后对每个继续进行上述步骤,直到所有结点都被访问过为止,当然,在访问过程中,需要使用一个队列,然后类似二叉树的层次遍历来 ...
- 提升机器学习数学基础,这7本书一定要读-附pdf资源
文章发布于公号[数智物语] (ID:decision_engine),关注公号不错过每一篇干货. 来源 | KDnuggets 作者 | Ajit Jaokar 转自 | 新智元 编辑 | 大明 [编 ...