PCIe设备发出MSI-X中断请求的方法与发出MSI中断请求的方法类似,都是向Message Address所在的地址写Message Data字段包含的数据。只是MSI-X中断机制为了支持更多的中断请求,在MSI-X Capablity结构中存放了一个指向一组Message Address和 Message Data字段的指针,从而一个PCIe设备可以支持的MSI-X中断请求数目大于32个,而且并不要求中断向量号连续。MSI-X机制使用的这组Message Address和 Message Data字段存放在PCIe设备的BAR空间中,而不是在PCIe设备的配置空间中,从而可以由用户决定使用MSI-X中断请求的数目。

当系统软件初始化PCIe设备时,如果该PCIe设备使用MSI-X机制传递中断请求,需要对MSI-X Capability结构指向的Message Address和Message Data字段进行设置,并使能MSI-X Enable位。x86处理器在此处的实现与PowerPC处理器有较大的不同。

6.3.1 Message Address字段和Message Data字段的格式

在x86处理器系统中,PCIe设备也是通过向Message Address写入Message Data指定的数值实现MSI/MSI-X机制。在x86处理器系统中,PCIe设备使用的Message Adress字段和Message Data字段与PowerPC处理器不同。

1 PCIe设备使用Message Adress字段

在x86处理器系统中,PCIe设备使用的Message Address字段仍然保存PCI总线域的地址,其格式如图6?7所示。

其中第31~20位,存放FSB Interrupts存储器空间的基地址,其值为0xFEE。当PCIe设备对0xFEEX-XXXX这段“PCI总线域”的地址空间进行写操作时,MCH/ICH将会首先进行“PCI总线域”到“存储器域”的地址转换,之后将这个写操作翻译为FSB总线的Interrupt Message总线事务,从而向CPU内核提交中断请求。

x86处理器使用FSB Interrupt Message总线事务转发MSI/MSI-X中断请求。使用这种方法的优点是向CPU内核提交中断请求的同时,提交PCIe设备使用的中断向量,从而CPU不需要使用中断响应周期从寄存器中获得中断向量。FSB Interrupt Message总线事务的详细说明见下文。

Message Address字段其他位的含义如下所示。

  • Destination ID字段保存目标CPU的ID号,目标CPU的ID与该字段相等时,目标CPU将接收这个Interrupt Message。FSB Interrupt Message总线事务可以向不同的CPU提交中断请求。
  • RH(Redirection Hint Indication)位为0时,表示Interrupt Message将直接发向与Destination ID字段相同的目标CPU;如果RH为1时,将使能中断转发功能。
  • DM(Destination Mode)位表示在传递优先权最低的中断请求时,Destination ID字段是否被翻译为Logical或者Physical APIC ID。在x86处理器中APIC ID有三种模式,分别为Physical、Logical和Cluster ID模式。
  • 如果RH位为1且DM位为0时,Destination ID字段使用Physical模式;如果RH位为1且DM位为1,Destination ID字段使用Logical模式;如果RH位为0,DM位将被忽略。

以上这些字段的描述与x86处理器使用的APIC中断控制器相关。对APIC的详细说明超出了本书的范围,对此部分感兴趣的读者请参阅Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Part 1。

2 Message Data字段

Message Data字段的格式如图6?8所示。

Trigger Mode字段为0b0x时,PCIe设备使用边沿触发方式申请中断;为0b10时使用低电平触发方式;为0b11时使用高电平触发方式。MSI/MSI-X中断请求使用边沿触发方式,但是FSB Interrupt Message总线事务还支持Legacy INTx中断请求方式,因此在Message Data字段中仍然支持电平触发方式。但是对于PCIe设备而言,该字段为0b0x。

Vector字段表示这个中断请求使用的中断向量。FSB Interrupt Message总线事务在提交中断请求的同时,将中断向量也通知给处理器。因此使用FSB Interrupt Message总线事务时,处理器不需要使用中断响应周期通过读取中断控制器获得中断向量号。与PowerPC的传统方式相比,x86处理器的这种中断请求的效率较高[①]

值得注意的是,在x86处理器中,MSI机制使用的Message Data字段与MSI-X机制相同。但是当一个PCIe设备支持多个MSI中断请求时,其Message Data字段必须是连续的,因而其使用的Vector字段也必须是连续的,这也是在x86处理器系统中,PCIe设备支持多个MSI中断请求的问题所在,而使用MSI-X机制有效避免了该问题。

Delivery Mode字段表示如何处理来自PCIe设备的中断请求。

  • 该字段为0b000时,表示使用“Fixed Mode”方式。此时这个中断请求将被Destination ID字段指定的CPU处理。
  • 该字段为0b001时,表示使用“Lowest Priority”方式。此时这个中断请求将被优先权最低的CPU处理。当使用“Fixed Mode”和“Lowest Priority”方式时,如果Vector字段有效,CPU接收到这个中断请求之后,将使用Vector字段指定的中断向量处理这些中断请求;而当Delivery Mode字段为其他值时,Message Data字段中所包含的Vector字段无效。
  • 该字段为0b010时,表示使用SMI方式传递中断请求,而且必须使用边沿触发,此时Vector字段必须为0。这个中断请求将被Destination ID字段指定的CPU处理。
  • 该字段为0b100时,表示使用NMI方式传递中断请求,而且必须使用边沿触发,此时Vector字段和Trigger字段的内容将被忽略。这个中断请求将被Destination ID字段指定的CPU处理。
  • 该字段为0b101时,表示使用INIT方式传递中断请求,Vector字段和Trigger字段的内容将被忽略。这个中断请求将被Destination ID字段指定的CPU处理。
  • 该字段为0b111时,表示使用INTR信号传递中断请求且使用边沿触发。此时MSI中断信息首先传递给中断控制器,然后中断控制器在通过INTR信号向CPU传递中断请求,之后CPU在通过中断响应周期获得中断向量。上文中PowerPC处理器使用的方法与此方法类似。而在x86处理器中多使用Interrupt Message总线事务进行MSI中断信息的传递,因此这种模式很少被使用。

边沿触发和电平触发是中断请求常用的两种方式。其中电平触发指外部设备使用逻辑电平1(高电平触发)或者0(低电平触发),提交中断请求。使用电平或者边沿方式提交中断请求时,外部设备一般通过中断线(IRQ_PIN#)与中断控制器相连,其中多个外部设备可能通过相同的中断线与中断控制器相连(线与或者与门)。

外部设备在使用低电平触发,提交中断请求的过程中,首先需要将IRQ_PIN#信号驱动为低。当中断控制器将该中断请求提交给处理器,而且处理器将这个中断请求处理完毕后,处理器将通过写外部设备的某个寄存器来清除此中断源,此时外部设备将不再驱动IRQ_PIN#信号线,从而结束整个中断请求。

IRQ_PIN#信号线可以被多个外部设备共享,在这种情况之下,只有所有外部设备都不驱动IRQ_PIN#信号线时,IRQ_PIN#信号才为高电平。采用电平触发方式进行中断请求的优点是不会丢失中断请求,而缺点是一个优先权较高的中断请求有可能会长期占用中断资源,从而使其他优先权较低的中断不能被及时提交。因为优先级别较高的中断源有可能会持续不断地驱动IRQ_PIN#信号。

而边沿触发使用上升沿(0到1)或者下降沿(1到0)作为触发条件,但是中断控制器并不是使用这个“边沿”作为触发条件。中断控制器使用内部时钟对IRQ_PIN#信号进行采样,如果在前一个时钟周期,IRQ_PIN#信号为0,而后一个时钟周期,IRQ_PIN#信号为1,中断控制器认为外部设备提交了一个有效“上升沿”,中断控制器会锁定这个“上升沿”并向处理器发出中断请求。这也是外部设备至少需要将IRQ_PIN#信号保持一个时钟采样周期的原因,否则中断控制器可能无法识别本次边沿触发的中断请求,从而产生Spurious中断请求。

外部设备使用“上升沿”进行中断申请时,不需要持续地将IRQ_PIN#信号驱动为1,而只需要保证中断控制器可以进行正确采样这些中断信号即可。在处理边沿触发中断请求时,处理器不需要清除中断源。

使用边沿触发可以有效避免“优先级别”较高的中断源长期占用IRQ_PIN#信号的情况,使用“下降沿”触发进行中断请求与“上升沿”触发类似。

但是外部设备使用边沿触发方式时,有可能会丢失一些中断请求。例如在一个处理器系统中,存在一个定时器,这个定时器使用上升沿触发方式向中断控制器定时提交中断。如果当处理器正在处理这个定时器的上一个中断请求时,将不会处理这个定时器发出的其他“边沿”中断请求,从而导致中断丢失。而使用电平触发方式不会出现这类问题,因为电平触发方式是一个“持续”过程,处理器只有处理完毕当前中断,并清除相应中断源之后,才会处理下一个中断源。

MSI中断请求实际上和边沿触发方式非常类似,MSI中断请求通过存储器写TLP实现,这个写动作是一个瞬间的动作,并不是一个持续请求,因此在x86处理器中MSI中断请求使用边沿触发进行中断请求。

还有一些外部设备可以通过I/O APIC进行中断请求[②],这些I/O APIC接收的外部中断需要标明是使用边沿或者电平触发,I/O APIC使用FSB Interrupt Message总线事务将中断请求发向Local APIC,并由Local APIC向处理器提交中断请求。

6.3.2 FSB Interrupt Message总线事务

与MPC8572处理器处理MSI中断请求不同,x86处理器使用FSB的Interrupt Message总线事务,处理PCIe设备的MSI/MSI-X中断请求。由上文所示,MPC8572处理器处理MSI中断请求时,首先由MPIC中断控制器截获这个MSI中断请求,之后由MPIC中断控制器向CPU提交中断请求,而CPU通过中断响应周期从MPIC中断控制器的ACK寄存器中获得中断向量。

采用这种方式的主要问题是,当一个处理器中存在多个CPU时,这些CPU都需要通过中断响应周期从MPIC中断控制器的ACK寄存器中获得中断向量。在一个中断较为密集的应用中,ACK寄存器很可能会成为系统瓶颈。而采用Interrupt Message总线事务可以有效地避免这种系统瓶颈,因为使用这种方式中断信息和中断向量将同时到达指定的CPU,而不需要使用中断响应周期获得中断向量。

x86处理器也具有通过中断控制器提交MSI/MSI-X中断请求的方法,在I/O APIC具有一个 “The IRQ Pin Assertion Register”寄存器,该寄存器地址为0xFEC00020[③],其第4~0位存放IRQ Number。系统软件可以将PCIe设备的Message Address寄存器设置为0xFEC00020,将Meaasge Data寄存器设置为相应的IRQ Number。

当PCIe设备需要提交MSI中断请求时,将向PCI总线域的0xFEC00020地址写入Message Data寄存器中的数据。此时这个存储器写请求将数据写入I/O APIC的The IRQ Pin Assertion Register中,并由I/O APIC将这个MSI中断请求最终发向Local APIC,之后再由Local APIC通过INTR#信号向CPU提交中断请求。

上述步骤与MPC8572处理器传递MSI中断的方法类似。在x86处理器中,这种方式基本上已被弃用。下文以图6?9为例,说明x86处理器如何使用FSB总线的Interrupt Message总线事务,向CPU提交MSI/MSI-X中断请求。

PCIe设备在发送MSI/MSI-X中断请求之前,系统软件需要合理设置PCIe设备MSI/MSI-X Capability寄存器,使Message Address寄存器的值为0xFEExx00y[④],同时合理地设置Message Data寄存器Vector字段。

PCIe设备提交MSI/MSI-X中断请求时,需要向0xFEExx00y地址写Message Data寄存器中包含的数据,并以存储器写TLP的形式发送到RC。如果ICH收到这个存储器写TLP时,将通过DMI接口将这个TLP提交到MCH。MCH收到这个TLP后,发现这个TLP的目的地址在FSB Interrupts存储器空间中,则将PCIe总线的存储器写请求转换为Interrupt Message总线事务,并在FSB总线上广播。

FSB总线上的CPU,根据APIC ID信息,选择是否接收这个Interrupt Message总线事务,并进入中断状态,之后该CPU将直接从这个总线事务中获得中断向量号,执行相应的中断服务例程,而不需要从APIC中断控制器获得中断向量。与PowerPC处理器的MPIC中断控制器相比,这种方法更具优势。

6.4 小结

本章详细描述了MSI/MSI-X中断机制的原理,并以PowerPC和x86两个处理器系统为例说明这两种中断机制实现机制。本章因为篇幅有限,并没有详细讲述这两个处理器使用的中断控制器。而理解这些中断控制器的实现机制是进一步理解MSI/MSI-X中断机制的要点。对此部分有兴趣的读者可以继续阅读MPIC中断控制器和APIC中断控制器的实现机制,以加深对MSI/MSI-X中断机制的理解。

设备的中断处理是局部总线的设计难点和重要组成部分,而中断处理的效率直接决定了局部总线的数据传送效率。在一个处理器系统的设计与实现中,中断处理的优化贯彻始终。

6.3 x86处理器如何处理MSI-X中断请求的更多相关文章

  1. 6.2 PowerPC处理器如何处理MSI中断请求

    PowerPC处理器使用OpenPIC中断控制器或者MPIC中断控制器,处理外部中断请求.其中MPIC中断控制器基于OpenPIC中断控制器,但是作出了许多增强,目前Freescale新推出的Powe ...

  2. ASM:《X86汇编语言-从实模式到保护模式》第10章:32位x86处理器的编程架构

    ★PART1:32位的x86处理器执行方式和架构 1. 寄存器的拓展(IA-32) 从80386开始,处理器内的寄存器从16位拓展到32位,命名其实就是在前面加上e(Extend)就好了,8个通用寄存 ...

  3. 分配粒度和内存页面大小(x86处理器平台的分配粒度是64K,内存页是4K,所以section都是0x1000对齐,硬盘扇区大小是512字节,所以PE文件默认文件对齐是0x200)

    分配粒度和内存页面大小 x86处理器平台的分配粒度是64K,32位CPU的内存页面大小是4K,64位是8K,保留内存地址空间总是要和分配粒度对齐.一个分配粒度里包含16个内存页面. 这是个概念,具体不 ...

  4. 中国自主X86处理器工艺跃进:国产28nm升级16nm(上海兆芯)

    提到X86处理器,世人皆知Intel.AMD,殊不知还有个VIA(威盛),在Intel反垄断世纪大战中VIA公司作为Intel霸权的受害者也最终确认了X86授权,不过VIA与前面两家的实力相差太远,X ...

  5. [转帖]年经贴: ARM将为苹果开发高性能CPU核心 取代笔记本x86处理器?

    ARM将为苹果开发高性能CPU核心 取代笔记本x86处理器? https://www.cnbeta.com/articles/tech/899421.htm . 之前苹果的哥们说过 谁特别在意自己的软 ...

  6. [转帖]兆芯发布国产X86处理器KX-6000和KH-30000,性能提升达50%,附详情介绍

    兆芯发布国产X86处理器KX-6000和KH-30000,性能提升达50%,附详情介绍 2019-06-20 09:56:38作者:linux人稿源:快科技 https://ywnz.com/linu ...

  7. 【转帖】国产x86处理器KX-6000发布

    国产最先进x86处理器KX-6000发布:8核3.0GHz 力压酷睿i5处理器 https://www.cnbeta.com/articles/tech/858981.htm 全网所有的网页都写错了 ...

  8. [转帖]又一国产x86处理器可大规模上市:Intel至强核心 安全监测管控

    又一国产x86处理器可大规模上市:Intel至强核心 安全监测管控 https://www.cnbeta.com/articles/tech/850525.htm 不知道是不是有一起汉芯事件 国产CP ...

  9. 【X86】---X86处理器大小端的数据存储验证

    之前也关注过大小端的存储,可能时间久了,加之又之前的电脑抽象换成了当前的处理器寄存器的值判断,导致自己总是有点蒙圈.看Spec手册的时候,有时会无法与手册中某个Bit的值与RU/RW工具读出来的对应上 ...

随机推荐

  1. FastDFS角色配置参数思维导图

  2. Node.js系列-express(上)

    前言 Node.js系列的第一篇:http,大概描述了通过使用node.js内置的api创建一个服务并监听request实现简单的增删改查.现在,我们就通过通读express官网及使用express框 ...

  3. Jmeter之性能测试类型

    pipe-clean test 在测试环境预先跑 确定脚本准确性 单用户跑 获取baseline   容量测试 经典的性能测试类型 获取系统稳定运行时最大的吞吐量/并发数/响应时间时 尽量模拟真实情况 ...

  4. 使用localhost可以访问,但使用本地ip+端口号无法访问

    今天想使用ip访问本机的iview-admin项目,结果怎么配置都无法访问,根据iview工程执行的命令npm run dev了解到是webpack配置的问题,打开工程里的node_modules文件 ...

  5. Django之反向生成url

    首先新建一个项目test_url,项目包含一个名为app01的应用 在urls.py文件中生成如下内容 from django.conf.urls import url from django.sho ...

  6. 小白学Docker之Compose

    承接上篇文章:小白学Docker之基础篇,自学网站来源于https://docs.docker.com/get-started 概念 Compose是一个编排和运行多容器Docker应用的工具,主要是 ...

  7. centos 6.5静态网址简单配置

    详细配置参数参考如下: DEVICE=eth0HWADDR=08:00:27:F1:72:C9TYPE=EthernetUUID=dab98425-fa46-4a5b-8f47-cf846d4acb3 ...

  8. LANMP系列教程之MySQL编译安装CentOS7环境

      以MySQL5.5.33版本为例 1.准备工作: 1.首先准备好源代码包 2.并且确保已安装好 "开发工具" 包组和cmake编译工具 3.确保安装好ncurses-devel ...

  9. 【OCR技术系列之四】基于深度学习的文字识别(3755个汉字)

    上一篇提到文字数据集的合成,现在我们手头上已经得到了3755个汉字(一级字库)的印刷体图像数据集,我们可以利用它们进行接下来的3755个汉字的识别系统的搭建.用深度学习做文字识别,用的网络当然是CNN ...

  10. ubuntu中gdb调试工具的使用

    首先有一段.c代码 1.可调试gcc编译:gcc -g -o xxx xxx.c 2.启动gdb调试 gdb xxx 3.在main函数处设置断点 break main 4.运行程序 run 5.其他 ...