转载自:http://www.orangecube.NET/Python-time-complexity

本页面涵盖了Python中若干方法的时间复杂度(或者叫“大欧”,“Big O”)。该时间复杂度的计算基于当前(译注:至少是2011年之前)的CPython实现。其他Python的实现(包括老版本或者尚在开发的CPython实现)可能会在性能表现上有些许小小的差异,但一般不超过一个O(log n)项。

本文中,’n’代表容器中元素的数量,’k’代表参数的值,或者参数的数量。

列表(list

以完全随机的列表考虑平均情况。

列表是以数组(Array)实现的。最大的开销发生在超过当前分配大小的增长,这种情况下所有元素都需要移动;或者是在起始位置附近插入或者删除元素,这种情况下所有在该位置后面的元素都需要移动。如果你需要在一个队列的两端进行增删的操作,应当使用collections.deque(双向队列)

操作 平均情况 最坏情况
复制 O(n) O(n)
append[注1] O(1) O(1)
插入 O(n) O(n)
取元素 O(1) O(1)
更改元素 O(1) O(1)
删除元素 O(n) O(n)
遍历 O(n) O(n)
取切片 O(k) O(k)
删除切片 O(n) O(n)
更改切片 O(k+n) O(k+n)
extend[注1] O(k) O(k)
排序 O(n log n) O(n log n)
列表乘法 O(nk) O(nk)
x in s O(n)  
min(s), max(s) O(n)  
计算长度 O(1) O(1)

双向队列(collections.deque

deque (double-ended queue,双向队列)是以双向链表的形式实现的 (Well, a list of arrays rather than objects, for greater efficiency)。双向队列的两端都是可达的,但从查找队列中间的元素较为缓慢,增删元素就更慢了。

操作 平均情况 最坏情况
复制 O(n) O(n)
append O(1) O(1)
appendleft O(1) O(1)
pop O(1) O(1)
popleft O(1) O(1)
extend O(k) O(k)
extendleft O(k) O(k)
rotate O(k) O(k)
remove O(n) O(n)

集合(set)

未列出的操作可参考 dict —— 二者的实现非常相似。

操作 平均情况 最坏情况
x in s O(1) O(n)
并集 s|t O(len(s)+len(t))  
交集 s&t O(min(len(s), len(t)) O(len(s) * len(t))
差集 s-t O(len(s))  
s.difference_update(t) O(len(t))  
对称差集 s^t O(len(s)) O(len(s) * len(t))
s.symmetric_difference_update(t) O(len(t)) O(len(t) * len(s))

由源码得知,求差集(s-t,或s.difference(t))运算与更新为差集(s.difference_uptate(t))运算的时间复杂度并不相同!前者是将在s中,但不在t中的元素添加到新的集合中,因此时间复杂度为O(len(s));后者是将在t中的元素从s中移除,因此时间复杂度为O(len(t))。因此,使用时请留心,根据两个集合的大小以及是否需要新集合来选择合适的方法。

集合的s-t运算中,并不要求t也一定是集合。只要t是可遍历的对象即可。

字典(dict)

下列字典的平均情况基于以下假设:
1. 对象的散列函数足够撸棒(robust),不会发生冲突。
2. 字典的键是从所有可能的键的集合中随机选择的。

小窍门:只使用字符串作为字典的键。这么做虽然不会影响算法的时间复杂度,但会对常数项产生显著的影响,这决定了你的一段程序能多快跑完。

操作 平均情况 最坏情况
复制[注2] O(n) O(n)
取元素 O(1) O(n)
更改元素[注1] O(1) O(n)
删除元素 O(1) O(n)
遍历[注2] O(n) O(n)

注:
[1] = These operations rely on the “Amortized” part of “Amortized Worst Case”. Individual actions may take surprisingly long, depending on the history of the container.

[2] = For these operations, the worst case n is the maximum size the container ever achieved, rather than just the current size. For example, if N objects are added to a dictionary, then N-1 are deleted, the dictionary will still be sized for N objects (at least) until another insertion is made.

Python内置方法的时间复杂度的更多相关文章

  1. Python内置方法的时间复杂度(转)

    原文:http://www.orangecube.net/python-time-complexity 本文翻译自Python Wiki本文基于GPL v2协议,转载请保留此协议. 本页面涵盖了Pyt ...

  2. python 内置方法的时间复杂度

    好文,非常值得参考 http://www.orangecube.net/python-time-complexity

  3. Python内置方法详解

    1. 字符串内置方法详解 为何要有字符串?相对于元组.列表等,对于唯一类型的定义,字符串具有最简单的形式. 字符串往往以变量接收,变量名. 可以查看所有的字符串的内置方法,如: 1> count ...

  4. 匿名函数 python内置方法(max/min/filter/map/sorted/reduce)面向过程编程

    目录 函数进阶三 1. 匿名函数 1. 什么是匿名函数 2. 匿名函数的语法 3. 能和匿名函数联用的一些方法 2. python解释器内置方法 3. 异常处理 面向过程编程 函数进阶三 1. 匿名函 ...

  5. 时间复杂度Big O以及Python 内置函数的时间复杂度

    声明:本文部分内容摘自 原文 本文翻译自Python Wiki 本文基于GPL v2协议,转载请保留此协议. 本页面涵盖了Python中若干方法的时间复杂度(或者叫"大欧",&qu ...

  6. python 内置方法、数据序列化

    abc(*args, **kwargs) 取绝对值 def add(a,b,f): return f(a)+f(b) res = add(3,-6,abs) print(res) all(*args, ...

  7. 基于python内置方法进行代码混淆

    0x00 动态加载模块 在python脚本中,直接使用import os.import subprocess或from os import system这种方法很容易被规则检测,即使使用其它执行命令的 ...

  8. python内置方法

    1. 简介 本指南归纳于我的几个月的博客,主题是 魔法方法 . 什么是魔法方法呢?它们在面向对象的Python的处处皆是.它们是一些可以让你对类添加"魔法"的特殊方法. 它们经常是 ...

  9. Python几种数据结构内置方法的时间复杂度

    参考:https://blog.csdn.net/baoli1008/article/details/48059623 注:下文中,’n’代表容器中元素的数量,’k’代表参数的值,或者参数的数量. 1 ...

随机推荐

  1. Python内置函数(5)——pow

    英文文档: pow(x, y[, z]) Return x to the power y; if z is present, return x to the power y, modulo z (co ...

  2. emqtt 试用(二)验证 emq 和 mosquito 的共享订阅

    本地订阅(Local Subscription) 本地订阅(Local Subscription)只在本节点创建订阅与路由表,不会在集群节点间广播全局路由,非常适合物联网数据采集应用. 使用方式: 订 ...

  3. C# word文档转换成PDF格式文档

    最近用到一个功能word转pdf,有个方法不错,挺方便的,直接调用即可,记录下 方法:ConvertWordToPdf(string sourcePath, string targetPath) so ...

  4. python tornado TCPserver异步协程实例

    项目所用知识点 tornado socket tcpserver 协程 异步 tornado tcpserver源码抛析 在tornado的tcpserver文件中,实现了TCPServer这个类,他 ...

  5. python request

    python request a. 客户端向服务端发送多层字典的值 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 obj =  ...

  6. Java-Maven(八):IDEA使用本地maven,并配置远程中央仓库

    声明:已经安装了maven,安装请参考:<Java-Maven(一):Maven的简介与安装> 1)一般我们从github.码云(https://gitee.com)上获取代码后,实际上我 ...

  7. Java集合框架之四大接口、常用实现类

    Java集合框架 <Java集合框架的四大接口> Collection:存储无序的.不唯一的数据:其下有List和Set两大接口. List:存储有序的.不唯一的数据: Set:存储无序的 ...

  8. IIS7 http自动跳转到https

    1.下载安装URL重写模块:Microsoft URL Rewrite Module 32位:http://download.microsoft.com/download/4/9/C/49CD28DB ...

  9. [LeetCode] Number of Atoms 原子的个数

    Given a chemical formula (given as a string), return the count of each atom. An atomic element alway ...

  10. MySQL · 引擎特性 · InnoDB 同步机制

    前言 现代操作系统以及硬件基本都支持并发程序,而在并发程序设计中,各个进程或者线程需要对公共变量的访问加以制约,此外,不同的进程或者线程需要协同工作以完成特征的任务,这就需要一套完善的同步机制,在Li ...