学习最小生成树算法之前我们先来了解下下面这些概念:

  树(Tree):如果一个无向连通图中不存在回路,则这种图称为树。

  生成树 (Spanning Tree):无向连通图G的一个子图如果是一颗包含G的所有顶点的树,则该子图称为G的生成树。生成树是连通图的极小连通子图。这里所谓极小是指:若在树中任意增加一条边,则将出现一条回路;若去掉一条边,将会使之变成非连通图。

  最小生成树(Minimum Spanning Tree,MST):或者称为最小代价树Minimum-cost Spanning Tree:对无向连通图的生成树,各边的权值总和称为生成树的权,权最小的生成树称为最小生成树。常用于网络构建等建设性问题的优化。

构成生成树的准则有三条:

  1、 必须只使用该网络中的边来构造最小生成树。

  2、必须使用且仅使用n-1条边来连接网络中的n个顶点

  3、不能使用产生回路的边。

  构造最小生成树的算法主要有:克鲁斯卡尔(Kruskal)算法和普利姆(Prim)算法他们都遵循以上准则。

  克鲁斯卡尔算法的基本思想是以边为主导地位,始终选择当前可用(所选的边不能构成回路)的最小权植边。所以Kruskal算法的第一步是给所有的边按照从小到大的顺序排序。这一步可以直接使用库函数qsort或者sort。接下来从小到大依次考察每一条边(u,v)。

具体实现过程如下:

  1、设一个有n个顶点的连通网络为G(V,E),最初先构造一个只有n个顶点,没有边的非连通图T={V,空},图中每个顶点自成一格连通分量。

  2、在E中选择一条具有最小权植的边时,若该边的两个顶点落在不同的连通分量上,则将此边加入到T中;否则,即这条边的两个顶点落到同一连通分量      上,则将此边舍去(此后永不选用这条边),重新选择一条权植最小的边。

  3、如此重复下去,直到所有顶点在同一连通分量上为止。

 import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set; public class Kruskal {
private final List<Edge> edgeList;
private final int n;//总顶点数 private Set<Edge> T = new HashSet<>();//生成树的边集
private Map pntAndNode = new HashMap(); public Set<Edge> getT() {
buildMST();
return T;
} public Kruskal(List<Edge> edgeList, int n) {
this.edgeList = edgeList;
//为每个顶点建立一个并查集的点
for (Edge edge : edgeList) {
pntAndNode.put(edge.getStart(), new UnionFind.UFNode());
pntAndNode.put(edge.getEnd(), new UnionFind.UFNode());
}
this.n = n;
} public static void main(String[] args) {
List<Edge> edgeList = build();
Kruskal obj = new Kruskal(edgeList, 5);
// obj.buildMST();
for (Edge e : obj.getT()) {
System.out.println(e);
}
} private static List<Edge> build() {
List<Edge> l = new ArrayList<>();
l.add(new Edge("C", "D", 1));
l.add(new Edge("C", "A", 1));
l.add(new Edge("C", "E", 8));
l.add(new Edge("A", "B", 3));
l.add(new Edge("D", "E", 3));
l.add(new Edge("B", "C", 5));
l.add(new Edge("B", "E", 6));
l.add(new Edge("B", "D", 7));
l.add(new Edge("A", "D", 2));
l.add(new Edge("A", "E", 9)); return l;
} /*构建MST的核心方法*/
private void buildMST() {
Collections.sort(edgeList);//排序
//迭代
for (Edge e : edgeList) {
if (!ok(e))
continue;
//确认过了,就把边都加入
T.add(e); if (T.size() == n - 1)
return;//生成树的边数==总顶点数-1 =》 所有点都已经连接
}
} //并查集中查询e 的起点和终点是否在一个集中
private boolean ok(Edge e) {
UnionFind.UFNode x = (UnionFind.UFNode) pntAndNode.get(e.getStart());
UnionFind.UFNode y = (UnionFind.UFNode) pntAndNode.get(e.getEnd());
if (UnionFind.find(x) != UnionFind.find(y)) {//在不同的集中
UnionFind.union(x, y);//合并并返回true
return true;
}
return false;
} }

  最关键的地方在于“连通分量的查询合并”,需要知道任意两个点是否在同一连通分量中,还需要合并两个连通分量。这个问题正好可以用并查集完美的解决

  并查集(Union-Find set)这个数据结构可以方便快速的解决这个问题。基本的处理思想是:初始时把每个对象看作是一个单元素集合;然后依次按顺序读入联通边,将连通边中的两个元素合并。在此过程中将重复使用一个搜索(Find)运算,确定一个集合在那个集合中。当读入一个连通边(u,v)时,先判断u和v是否在同一个集合中,如果是则不用合并;如果不是,则用一个合并(Union)运算把u、v所在集合合并,使得这两个集合中的任意两个元素都连通。因此并查集在处理时,主要用到搜索合并两个运算。

  为了方便并查集的描述与实现,通常把先后加入到一个集合中的元素表示成一个树结构,并用根结点的序号来表示这个集合。因此定义一个parent[n]的数组,parent[i]中存放的就是结点i所在的树中结点i的父亲节点的序号。例如,如果parent[4]=5,就是说4号结点的父亲结点是5号结点。约定:如果i的父结点(即parent[i])是负数,则表示结点i就是它所在的集合的根结点,因为集合中没有结点的序号是负的;并且用负数的绝对值作为这个集合中所含结点的个数。例如,如果parent[7]=-4,说明7号结点就是它所在集合的根结点,这个集合有四个元素。初始时结点的parent值为-1(每个结点都是根结点,只包含它自己一个元素)。

  实现并查集数据结构主要有2个函数。

 import java.util.HashSet;
import java.util.Set; public class UnionFind { public static UFNode find(UFNode x) {
UFNode p = x;
Set<UFNode> path = new HashSet<UFNode>();
// 记录向上追溯的路径上的点
while (p.parent != null) {
path.add(p);
p = p.parent;
}
// 这些点的parent全部指向这个集的代表
for (UFNode ppp : path) {
ppp.parent = p;
}
// root
return p; } public static void union(UFNode x, UFNode y) {
find(y).parent = find(x);
} public static class UFNode {
UFNode parent;
}
}

  最后贴出边集的代码

 /**
* 边 的封装
* 边集可以用来表示图
*/
public class Edge<T> implements Comparable<Edge> {
private T start;
private T end;
private int distance; public Edge(T start, T end, int distance) {
this.start = start;
this.end = end;
this.distance = distance;
} public T getStart() {
return start;
} public void setStart(T start) {
this.start = start;
} public T getEnd() {
return end;
} public void setEnd(T end) {
this.end = end;
} public int getDistance() {
return distance;
} public void setDistance(int distance) {
this.distance = distance;
} @Override
public String toString() {
return start + "->" + end + ":" + distance;
} @Override
public int compareTo(Edge obj) {
int targetDis = obj.getDistance();
return distance > targetDis ? 1 : (distance == targetDis ? 0 : -1);
}
}

  最后运行Kruskal类的结果为:

  例题:POJ- 1287,蓝桥杯-城市建设。

最小生成树之Kruskal(克鲁斯卡尔)算法的更多相关文章

  1. 经典问题----最小生成树(kruskal克鲁斯卡尔贪心算法)

    题目简述:假如有一个无向连通图,有n个顶点,有许多(带有权值即长度)边,让你用在其中选n-1条边把这n个顶点连起来,不漏掉任何一个点,然后这n-1条边的权值总和最小,就是最小生成树了,注意,不可绕成圈 ...

  2. 最小生成树——Kruscal(克鲁斯卡尔算法)

    一.核心思想 ​ 将输入的数据由小到大进行排序,再使用并查集算法(传送门)将每个点连接起来,同时求和. ​ 个人认为这个算法比较偏向暴力,有些题可能会超时. 二.例题 洛谷-P3366 题目地址:ht ...

  3. 贪心算法(Greedy Algorithm)之最小生成树 克鲁斯卡尔算法(Kruskal&#39;s algorithm)

    克鲁斯卡尔算法(Kruskal's algorithm)是两个经典的最小生成树算法的较为简单理解的一个.这里面充分体现了贪心算法的精髓.大致的流程能够用一个图来表示.这里的图的选择借用了Wikiped ...

  4. 贪心算法(Greedy Algorithm)最小生成树 克鲁斯卡尔算法(Kruskal&#39;s algorithm)

    克鲁斯卡尔算法(Kruskal's algorithm)它既是古典最低的一个简单的了解生成树算法. 这充分反映了这一点贪心算法的精髓.该方法可以通常的图被表示.图选择这里借用Wikipedia在.非常 ...

  5. 最小生成树---普里姆算法(Prim算法)和克鲁斯卡尔算法(Kruskal算法)

    普里姆算法(Prim算法) #include<bits/stdc++.h> using namespace std; #define MAXVEX 100 #define INF 6553 ...

  6. 最小生成树--克鲁斯卡尔算法(Kruskal)

    按照惯例,接下来是本篇目录: $1 什么是最小生成树? $2 什么是克鲁斯卡尔算法? $3 克鲁斯卡尔算法的例题 摘要:本片讲的是最小生成树中的玄学算法--克鲁斯卡尔算法,然后就没有然后了. $1 什 ...

  7. 最小生成树-克鲁斯卡尔算法(kruskal's algorithm)实现

    算法描述 克鲁斯卡尔算法是一种贪心算法,因为它每一步都挑选当前最轻的边而并不知道全局路径的情况. 算法最关键的一个步骤是要判断要加入mst的顶点是否会形成回路,我们可以利用并查集的技术来做. 并查集的 ...

  8. prim算法,克鲁斯卡尔算法---最小生成树

    最小生成树的一个作用,就是求最小花费.要在n个城市之间铺设光缆,主要目标是要使这 n 个城市的任意两个之间都可以通信,但铺设光缆的费用很高,且各个城市之间铺设光缆的费用不同,因此另一个目标是要使铺设光 ...

  9. 图->连通性->最小生成树(克鲁斯卡尔算法)

    文字描述 上一篇博客介绍了最小生成树(普里姆算法),知道了普里姆算法求最小生成树的时间复杂度为n^2, 就是说复杂度与顶点数无关,而与弧的数量没有关系: 而用克鲁斯卡尔(Kruskal)算法求最小生成 ...

随机推荐

  1. 数据结构 之 二叉堆(Heap)

    注:本节主要讨论最大堆(最小堆同理). 一.堆的概念     堆,又称二叉堆.同二叉查找树一样,堆也有两个性质,即结构性和堆序性.     1.结构性质:     堆是一棵被完全填满的二叉树,有可能的 ...

  2. sql server 高可用性技术总结

    一.  复制Replication(快照.事务.合并) 应用场景: 负载均衡.提供副本读,写操作. 分区将历史数据复制到其它表中. 授权,将数据提供它人使用. 数据合并. 故障转移. 优点: 实现简单 ...

  3. yii2.0 路由美化以及自定义设置

    在配置文件里修改: 如果把'enablePrettyUrl' => true,设为true那么你的gii就访问不到: 'rules' => [                 '<c ...

  4. Elasticsearch笔记九之优化

    Elasticsearch笔记九之优化 ).get(); } curl命令可以在linux中建立一个定时任务每天执行一次,同样java代码也可以建立一个定时器来执行. 2:内存设置之前介绍过es集群有 ...

  5. BZOJ_2238_Mst_树剖+线段树

    BZOJ_2238_Mst_树剖+线段树 Description 给出一个N个点M条边的无向带权图,以及Q个询问,每次询问在图中删掉一条边后图的最小生成树.(各询问间独立,每次询问不对之后的询问产生影 ...

  6. BZOJ_1058_[ZJOI2007]报表统计_STL

    BZOJ_1058_[ZJOI2007]报表统计_STL Description 小Q的妈妈是一个出纳,经常需要做一些统计报表的工作.今天是妈妈的生日,小Q希望可以帮妈妈分担一些工 作,作为她的生日礼 ...

  7. 遥远的国度 bzoj3083

    分析: 这个题一看就是裸的树剖... 唯一值得考虑的就是它的根一直在变化,我们可以这样想,如果假根在这个点的子树外,那么直接将这个点的子树作为答案区间,如果在子树内,则相对复杂,我们假设son为roo ...

  8. 我的微服务观,surging 2.0将会带来多大的改变

    Surging 自2017年6月16日开源以来,已收到不少公司的关注或者使用,其中既有以海克斯康超大型等外企的关注,也不乏深圳泓达康.重庆金翅膀等传统行业的正式使用,自2019年年初,surging2 ...

  9. ASP.NET Core 实现带认证功能的Web代理服务器

    引言 最近在公司开发了一个项目,项目部署架构图如下: 思路 如图中文本所述,公司大数据集群不允许直接访问外网,需要一个网关服务器代理请求,本处服务器A就是边缘代理服务器的作用. 通常技术人员最快捷的思 ...

  10. 前端笔记之NodeJS(二)路由&REPL&模块系统&npm

    一.路由机制(静态资源文件处理) 1.1 Nodejs没有根目录 MIME类型:http://www.w3school.com.cn/media/media_mimeref.asp 在Apache中, ...