我可以大喊一声这就是个思博题吗?

首先如果你能快速把握题目的意思后,就会发现题目就是让你求出每个点要成为树的重心至少要嫁接多少边

先说一个显然的结论,重心的答案为\(0\)(废话)

然后我们考虑贪心处理,每次肯定要砍断以重心为根的树的大小尽量大的子树

那么至少要砍多少呢,至少\(\frac{1}{2}\)要到吧,然后就是思博的感性理解了——这是每个点要砍的边的上界

假如我们总有一种方案可以使嫁接满足条件(兴许更多,但是这个不会证啊)

那么怎么判断是否达到上界呢,很简单,先取了必要的然后看剩下的有没有超过\(\frac{1}{2}\)即可

这个文字不好表述,大家还是自己看看代码吧

#include<cstdio>
#include<cctype>
#include<algorithm>
#define RI register int
#define CI const int&
#define Tp template <typename T>
using namespace std;
const int N=1000005;
struct edge
{
int to,nxt;
}e[N<<1]; int n,head[N],x,y,cnt,rt,mx[N],size[N],rch[N],tot,sum,cur,ans[N];
class FileInputOutput
{
private:
static const int S=1<<21;
#define tc() (A==B&&(B=(A=Fin)+fread(Fin,1,S,stdin),A==B)?EOF:*A++)
#define pc(ch) (Ftop<S?Fout[Ftop++]=ch:(fwrite(Fout,1,S,stdout),Fout[(Ftop=0)++]=ch))
char Fin[S],Fout[S],*A,*B; int Ftop,pt[15];
public:
Tp inline void read(T& x)
{
x=0; char ch; while (!isdigit(ch=tc()));
while (x=(x<<3)+(x<<1)+(ch&15),isdigit(ch=tc()));
}
Tp inline void write(T x)
{
if (!x) return (void)(pc('0'),pc('\n')); RI ptop=0;
while (x) pt[++ptop]=x%10,x/=10; while (ptop) pc(pt[ptop--]+48); pc('\n');
}
inline void Fend(void)
{
fwrite(Fout,1,Ftop,stdout);
}
#undef tc
#undef pc
}F;
inline void addedge(CI x,CI y)
{
e[++cnt]=(edge){y,head[x]}; head[x]=cnt;
e[++cnt]=(edge){x,head[y]}; head[y]=cnt;
}
inline int max(CI a,CI b)
{
return a>b?a:b;
}
inline bool cmp(CI x,CI y)
{
return size[x]>size[y];
}
#define to e[i].to
inline void getrt(CI now,CI fa=0)
{
size[now]=1; for (RI i=head[now];i;i=e[i].nxt) if (to!=fa)
getrt(to,now),size[now]+=size[to],mx[now]=max(mx[now],size[to]);
if (mx[now]=max(mx[now],n-size[now]),mx[now]<mx[rt]) rt=now;
}
inline void DFS(CI now,CI fa=0)
{
size[now]=1; for (RI i=head[now];i;i=e[i].nxt)
if (to!=fa) DFS(to,now),size[now]+=size[to];
}
inline void calc(CI now,CI fa,CI used)
{
ans[now]=cur+((n-used-size[now]<<1)>n?0:-1);
for (RI i=head[now];i;i=e[i].nxt) if (to!=fa) calc(to,now,used);
}
int main()
{
//freopen("B.in","r",stdin); freopen("B.out","w",stdout);
RI i; for (F.read(n),i=1;i<n;++i) F.read(x),F.read(y),addedge(x,y);
for (mx[rt]=1e9,getrt(1),i=head[rt];i;i=e[i].nxt) rch[++tot]=to;
for (DFS(rt),sort(rch+1,rch+tot+1,cmp),i=1;i<=tot;++i)
if (((sum+=size[rch[i]])<<1)>=n) { cur=i; break; }
for (i=1;i<=tot;++i) calc(rch[i],rt,sum-max(size[rch[i]],size[rch[cur]]));
for (i=1;i<=n;++i) F.write(ans[i]); return F.Fend(),0;
}

LOJ #6042. 「雅礼集训 2017 Day7」跳蚤王国的宰相的更多相关文章

  1. 【思维题 细节】loj#6042. 「雅礼集训 2017 Day7」跳蚤王国的宰相

    挂于±1的细节…… 题目描述 跳蚤王国爆发了一场动乱,国王在镇压动乱的同时,需要在跳蚤国地方钦定一个人来做宰相. 由于当时形势的复杂性,很多跳蚤都并不想去做一个傀儡宰相,带着宰相的帽子,最后还冒着被打 ...

  2. 「雅礼集训 2017 Day7」跳蚤王国的宰相(树的重心)

    题面 来源 「 雅 礼 集 训 2017 D a y 7 」 跳 蚤 王 国 的 宰 相   传 统 2000   m s 1024   M i B {\tt「雅礼集训 2017 Day7」跳蚤王国的 ...

  3. 【LOJ6042】「雅礼集训 2017 Day7」跳蚤王国的宰相(思博题)

    点此看题面 大致题意: 给你一棵树,询问对于每个点需要改变多少条边来使得它成为树中到所有点距离和最小的点. 一些初始化及想法 这是一道思博题. 首先我们要知道一个结论:对于这棵树的重心,它的答案必定为 ...

  4. 【刷题】LOJ 6041 「雅礼集训 2017 Day7」事情的相似度

    题目描述 人的一生不仅要靠自我奋斗,还要考虑到历史的行程. 历史的行程可以抽象成一个 01 串,作为一个年纪比较大的人,你希望从历史的行程中获得一些姿势. 你发现在历史的不同时刻,不断的有相同的事情发 ...

  5. loj 6043「雅礼集训 2017 Day7」蛐蛐国的修墙方案

    loj 爆搜? 爆搜! 先分析一下,因为我们给出的是一个排列,然后让\(i\)给\(p_i\)连边,那么我们一定会得到若干个环,最后要使得所有点度数为1,也就是这些环有完备匹配,那么最后一定全是偶环. ...

  6. LOJ #6041. 「雅礼集训 2017 Day7」事情的相似度

    我可以大喊一声这就是个套路题吗? 首先看到LCP问题,那么套路的想到SAM(SA的做法也有) LCP的长度是它们在parent树上的LCA(众所周知),所以我们考虑同时统计多个点之间的LCA对 树上问 ...

  7. loj#6041. 「雅礼集训 2017 Day7」事情的相似度(SAM set启发式合并 二维数点)

    题意 题目链接 Sol 只会后缀数组+暴躁莫队套set\(n \sqrt{n} \log n\)但绝对跑不过去. 正解是SAM + set启发式合并 + 二维数点/ SAM + LCT 但是我只会第一 ...

  8. LOJ #6043. 「雅礼集训 2017 Day7」蛐蛐国的修墙方案

    我可以大喊一声这就是个SB题吗? 首先讲一句如果你像神仙CXR一样精通搜索你就可以得到\(80pts\)(无Subtask)的好成绩 我们考虑挖掘一下题目的性质,首先发现这是一个置换,那么我们发现这的 ...

  9. loj#6041. 「雅礼集训 2017 Day7」事情的相似度(后缀自动机+启发式合并)

    题面 传送门 题解 为什么成天有人想搞些大新闻 这里写的是\(yyb\)巨巨说的启发式合并的做法(虽然\(LCT\)的做法不知道比它快到哪里去了--) 建出\(SAM\),那么两个前缀的最长公共后缀就 ...

随机推荐

  1. 从壹开始微服务 [ DDD ] 之二 ║ DDD入门 & 项目结构粗搭建

    前言 哈喽大家好,今天是周二,我们的DDD系列文章今天正式开始讲解,我这两天一直在学习,也一直在思考如何才能把这一个系列给合理的传递给大家,并且达到学习的目的,还没有特别好的路线,只是一个大概的模糊的 ...

  2. 【Netty】(6) ---源码ServerBootstrap

    [Netty]6 ---源码ServerBootstrap 之前写了两篇与Bootstrap相关的文章,一篇是ServerBootstrap的父类,一篇是客户端Bootstrap类,博客地址: [Ne ...

  3. Python爬虫入门教程 50-100 Python3爬虫爬取VIP视频-Python爬虫6操作

    爬虫背景 原计划继续写一下关于手机APP的爬虫,结果发现夜神模拟器总是卡死,比较懒,不想找原因了,哈哈,所以接着写后面的博客了,从50篇开始要写几篇python爬虫的骚操作,也就是用Python3通过 ...

  4. springboot~基于单元测试的mongodb

    添加对应版本的包 testCompile('de.flapdoodle.embed:de.flapdoodle.embed.mongo:1.46.0') 在测试之前,它会根据你的操作系统去下载当前的m ...

  5. SLAM+语音机器人DIY系列:(四)差分底盘设计——3.底盘通信协议

    摘要 运动底盘是移动机器人的重要组成部分,不像激光雷达.IMU.麦克风.音响.摄像头这些通用部件可以直接买到,很难买到通用的底盘.一方面是因为底盘的尺寸结构和参数是要与具体机器人匹配的:另一方面是因为 ...

  6. Django-restframework 之权限源码分析

    Django-restframework 之权限源码分析 一 前言 上篇博客分析了 restframework 框架的认证组件的执行了流程并自定义了认证类.这篇博客分析 restframework 的 ...

  7. java爬虫系列第五讲-如何使用代理防止爬虫被屏蔽?

    本文内容 1.分析一下爬虫存在的问题及解决方案 2.webmagic中代理的使用 3.目前市面上一些比较好用的代理服务器 存在的问题 我们在使用爬虫过程中,大多都会遇到这样的问题:突然某一天爬虫爬不到 ...

  8. 策略模式 Strategy 政策Policy 行为型 设计模式(二十五)

    策略模式 Strategy   与策略相关的常见词汇有:营销策略.折扣策略.教学策略.记忆策略.学习策略.... “策略”意味着分情况讨论,而不是一概而论 面对不同年龄段的人,面对不同的商品,必然将会 ...

  9. PyQtdeploy-V2.4 User Guide 中文 (一)

    PyQtdeploy 用户指南 目录 介绍 与V1.0+的差异 作者 证书 安装 部署过程概览 PyQt的演示 构建演示 Android IOS Linux MacOS Windos 构建系统根目录 ...

  10. Servlet练习:实现增删改查的综合练习

    ---恢复内容开始--- 本文为原创,转载请注明出处:https://www.cnblogs.com/Tom-shushu/p/9383066.html 本篇内容主要介绍:通过Servlet,JSP, ...