UOJ #269. 【清华集训2016】如何优雅地求和
UOJ #269. 【清华集训2016】如何优雅地求和
给定一个\(m\)次多项式\(f(x)\)的\(m+1\)个点值:\(f(0)\)到\(f(m)\)。
然后求:
\]
考虑一个很巧妙的变化:组合数多项式!
设:
\]
可以这么玩的原因是\(\binom{n}{m}\)其实是一个关于\(n\)的\(m\)次的多项式。因为\(\binom{n}{m}=\frac{\prod_{i=1}^m(n-i+1)}{m!}\)。
这就能理解为什么输入的是\(m+1\)个点值了,因为这样我们就能用二项式反演来求出\(h\):
对于\(m<i\leq n\),我们直接认为\(h_i=0\),因为只需要\(m\)项的\(h\)就可以确定\(f\)了。
\Rightarrow h_n=\sum_{i=0}^n (-1)^{n-i}\binom{n}{i}f_i
\]
写成卷积形式:
\]
再来算答案。
考虑对\(f\)的每一项计算:
Q(f,n,x) &=\sum_{i=0}^mh_i\sum_{k=i}^n\binom{k}{i}\binom{n}{k}x^k(1-x)^{n-k} \\
\end{align}
\]
我们知道:
\]
所以:
Q(f,n,x) &=\sum_{i=0}^mh_i\sum_{k=i}^n\binom{k}{i}\binom{n}{k}x^k(1-x)^{n-k} \\
&=\sum_{i=0}h_i\sum_{k=i}^n\binom{n}{i}\binom{n-i}{k-i}x^k(1-x)^{n-k}\\
&=\sum_{i=0}h_i\binom{n}{i}x^i \sum_{k=i}^n\binom{n-i}{k-i}x^{k-i}(1-x)^{n-k}\\
&=\sum_{i=0}h_i\binom{n}{i}x^i(x+1-x)^{n-i}\\
&=\sum_{i=0}h_i\binom{n}{i}x^i\\
\end{align}
\]
代码:
#include<bits/stdc++.h>
#define ll long long
#define N 20005
using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
const ll mod=998244353;
ll ksm(ll t,ll x) {
ll ans=1;
for(;x;x>>=1,t=t*t%mod)
if(x&1) ans=ans*t%mod;
return ans;
}
int n,m,x;
ll f[N];
void NTT(ll *a,int d,int flag) {
static int rev[N<<2];
static ll G=3;
int n=1<<d;
for(int i=0;i<n;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<d-1);
for(int i=0;i<n;i++) if(i<rev[i]) swap(a[i],a[rev[i]]);
for(int s=1;s<=d;s++) {
int len=1<<s,mid=len>>1;
ll w=flag==1?ksm(G,(mod-1)/len):ksm(G,mod-1-(mod-1)/len);
for(int i=0;i<n;i+=len) {
ll t=1;
for(int j=0;j<mid;j++,t=t*w%mod) {
ll u=a[i+j],v=a[i+j+mid]*t%mod;
a[i+j]=(u+v)%mod;
a[i+j+mid]=(u-v+mod)%mod;
}
}
}
if(flag==-1) {
ll inv=ksm(n,mod-2);
for(int i=0;i<n;i++) a[i]=a[i]*inv%mod;
}
}
ll A[N<<2],B[N<<2];
ll H[N];
ll fac[N<<2],ifac[N<<2];
ll C(int n,int m) {return fac[n]*ifac[m]%mod*ifac[n-m]%mod;}
ll down[N];
ll CC(int n,int m) {
if(!m) return 1;
return down[m]*ifac[m]%mod;
}
int main() {
n=Get(),m=Get(),x=Get();
for(int i=0;i<=m;i++) f[i]=Get();
fac[0]=1;
for(int i=1;i<=m;i++) fac[i]=fac[i-1]*i%mod;
ifac[m]=ksm(fac[m],mod-2);
for(int i=m-1;i>=0;i--) ifac[i]=ifac[i+1]*(i+1)%mod;
int d=ceil(log2(2*m+1));
ll flag=1;
for(int i=0;i<=m;i++,flag=flag*(mod-1)%mod) A[i]=flag*ifac[i]%mod;
for(int i=0;i<=m;i++) B[i]=f[i]*ifac[i]%mod;
NTT(A,d,1),NTT(B,d,1);
for(int i=0;i<1<<d;i++) A[i]=A[i]*B[i]%mod;
NTT(A,d,-1);
for(int i=0;i<=m;i++) H[i]=A[i]*fac[i]%mod;
ll ans=0;
down[1]=n;
for(int i=2;i<=m;i++) down[i]=down[i-1]*(n-i+1)%mod;
for(int i=0;i<=m;i++) (ans+=H[i]*ksm(x,i)%mod*CC(n,i))%=mod;
cout<<ans;
return 0;
}
UOJ #269. 【清华集训2016】如何优雅地求和的更多相关文章
- [清华集训2016]如何优雅地求和——NTT
题目链接: [清华集训2016]如何优雅地求和 题目大意:给出一个多项式$m+1$个点值$a_{0},a_{1}...a_{m}$(其中$f(i)=a_{i}$),并给出两个数$n,x$,求$Q(f, ...
- 洛谷 P6667 - [清华集训2016] 如何优雅地求和(下降幂多项式,多项式)
题面传送门 wjz:<如何优雅地 AK NOI> 我:如何优雅地爆零 首先,按照这题总结出来的一个小套路,看到多项式与组合数结合的题,可以考虑将普通多项式转为下降幂多项式,因为下降幂和组合 ...
- UOJ269 清华集训2016 如何优雅地求和 下降幂多项式、NTT
代码 神仙题? 看到连续的点值,那么一定是要利用到连续点值的性质,可以考虑下降幂多项式,即考虑多项式\(F(x) = \sum\limits_{i=0}^m a_ix^{\underline i}\) ...
- [UOJ#274][清华集训2016]温暖会指引我们前行
[UOJ#274][清华集训2016]温暖会指引我们前行 试题描述 寒冬又一次肆虐了北国大地 无情的北风穿透了人们御寒的衣物 可怜虫们在冬夜中发出无助的哀嚎 “冻死宝宝了!” 这时 远处的天边出现了一 ...
- BZOJ 4732 UOJ #268 [清华集训2016]数据交互 (树链剖分、线段树)
题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=4732 (UOJ) http://uoj.ac/problem/268 题解 ...
- [UOJ#276][清华集训2016]汽水[分数规划+点分治]
题意 给定一棵 \(n\) 个点的树,给定 \(k\) ,求 \(|\frac{\sum w(路径长度)}{t(路径边数)}-k|\)的最小值. \(n\leq 5\times 10^5,k\leq ...
- UOJ 275. 【清华集训2016】组合数问题
UOJ 275. [清华集训2016]组合数问题 组合数 $C_n^m $表示的是从 \(n\) 个物品中选出 \(m\) 个物品的方案数.举个例子,从$ (1,2,3)(1,2,3)$ 三个物品中选 ...
- [UOJ#276]【清华集训2016】汽水
[UOJ#276][清华集训2016]汽水 试题描述 牛牛来到了一个盛产汽水的国度旅行. 这个国度的地图上有 \(n\) 个城市,这些城市之间用 \(n−1\) 条道路连接,任意两个城市之间,都存在一 ...
- UOJ #274. 【清华集训2016】温暖会指引我们前行 [lct]
#274. [清华集训2016]温暖会指引我们前行 题意比较巧妙 裸lct维护最大生成树 #include <iostream> #include <cstdio> #incl ...
随机推荐
- 多线程总结之旅(1):线程VS进程
一.进程:进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,也就是应用程序的执行实例,进程是系统进行资源分配和调度的一个独立单位.每个进程是由私有的虚拟地址空间.代码.数据和其它各种系统资 ...
- 处理安卓和ios当页面原生键盘弹出,输入框不显示
$('input').on('click', function () { var target = this; // 使用定时器是为了让输入框上滑时更加自然 setTimeout(function() ...
- 开源:Taurus.MVC 框架 (已支持.NET Core)
为什么要创造Taurus.MVC: 记得被上一家公司忽悠去负责公司电商平台的时候,情况是这样的: 项目原版是外包给第三方的,使用:WebForm+NHibernate,代码不堪入目,Bug无限,经常点 ...
- 开源的类似于Apache ab的压力测试命令行工具SuperBenchmarker
SuperBenchmarker 是ㄧ个开源的类似于Apache ab的压力测试命令行工具.可以在 .NET 4.52+ 或者 .NET Core 2.0+ 平台上运行. 可支持Get.Post.Pu ...
- Dapeng框架-开源高性能分布式微服务框架
我们公司性质是新零售,公司也有专门的框架组.这群大牛自己开发了一整套分布式微服务框架.我们也在使用这套框架,有很多心得体会. 该框架既Dapeng也!开源github地址:https://github ...
- IM开发者的零基础通信技术入门(二):通信交换技术的百年发展史(下)
1.系列文章引言 1.1 适合谁来阅读? 本系列文章尽量使用最浅显易懂的文字.图片来组织内容,力求通信技术零基础的人群也能看懂.但个人建议,至少稍微了解过网络通信方面的知识后再看,会更有收获.如果您大 ...
- invokedynamic字节码指令
1. 方法引用和invokedynamic invokedynamic是jvm指令集里面最复杂的一条.本文将从高观点的角度下分析invokedynamic指令是如何实现方法引用(Method refe ...
- 如何解决Mac无法读取外置硬盘问题?
在mac中插入一款硬盘设备后发现硬盘无法显示在mac中,导致mac无法读取设备,遇到这种问题时需要如何解决? 首先,硬盘不能正常在mac上显示可能是硬盘出现了错误无法使用,也可能是硬盘的文件系统格式不 ...
- 由浅入深讲述MVVM
相信首次听说MVVM的人,内心都是充满疑惑的!这是个嘛???能干嘛??? MVVM是Model-View-ViewModel的简写.它本质上就是MVC (Model-View- Controller) ...
- 批量执行工具PSSH详解
批量执行工具PSSH详解 pssh是一个python编写可以在多台服务器上执行命令的工具,同时支持拷贝文件,是同类工具中很出色的,使用必须在各个服务器上配置好密钥认证访问. 安装pssh包 yum 安 ...