题面戳我

题意:求

\[\sum_{i=1}^{n}\sum_{j=1}^{n}\phi(\gcd(i,j))
\]

多组数据,\(n\le10^7\)。

sol

SBT

单组数据\(O(\sqrt n)\)都是套路了,完整公式就不写了。

最后要线性筛出来的积性函数长成这样

\[h(T)=\sum_{d|T}\mu(\frac Td)\phi(d)
\]

这个要怎么筛?我这种小菜鸡就只会大力分类讨论

我都快数不清我分了几种了

1、\(h(1)=1\)

2、\(h(p)=\mu(p)\phi(1)+\mu(1)\phi(p)=p-2\)

3、\(h(p^2)=\mu(p^2)\phi(1)+\mu(p)\phi(p)+\mu(1)\phi(p^2)=p^2-2p+1\)

4、\(h(p^k)=h(p^{k-1})*p\quad(k>2)\)

剩下的就线性筛了。

code

#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
const int N = 1e7;
int gi()
{
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
int pri[N+5],tot,zhi[N+5],low[N+5];
ll h[N+5];
void Mobius()
{
zhi[1]=h[1]=1;
for (int i=2;i<=N;i++)
{
if (!zhi[i]) low[i]=pri[++tot]=i,h[i]=i-2;
for (int j=1;j<=tot&&i*pri[j]<=N;j++)
{
zhi[i*pri[j]]=1;
if (i%pri[j]==0)
{
low[i*pri[j]]=low[i]*pri[j];
if (low[i]==i)
if (i==pri[j]) h[i*pri[j]]=h[i]*pri[j]+1;
else h[i*pri[j]]=h[i]*pri[j];
else
h[i*pri[j]]=h[i/low[i]]*h[low[i]*pri[j]];
break;
}
low[i*pri[j]]=pri[j];
h[i*pri[j]]=h[i]*h[pri[j]];
}
}
for (int i=2;i<=N;i++)
h[i]+=h[i-1];
}
int main()
{
Mobius();
int T=gi();
while (T--)
{
int n=gi(),i=1;
ll ans=0;
while (i<=n)
{
int j=n/(n/i);
ans+=(h[j]-h[i-1])*(n/i)*(n/i);
i=j+1;
}
printf("%lld\n",ans);
}
}

[BZOJ4804]欧拉心算的更多相关文章

  1. BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)

    一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...

  2. BZOJ4804: 欧拉心算(莫比乌斯反演 线性筛)

    题意 求$$\sum_1^n \sum_1^n \phi(gcd(i, j))$$ $T \leqslant 5000, N \leqslant 10^7$ Sol 延用BZOJ4407的做法 化到最 ...

  3. bzoj4804: 欧拉心算 欧拉筛

    题意:求\(\sum_{i=1}^n\sum_{j=1}^n\phi(gcd(i,j))\) 题解:\(\sum_{i==1}^n\sum_{j=1}^n\sum_{d=1}^n[gcd(i,j)== ...

  4. 并不对劲的bzoj4804:欧拉心算

    题目大意 \(t\)(\(t\leq5000\))组询问,每次询问给出\(n\)(\(n\leq10^7\)),求: \[\sum_{i=1}^{n}\sum_{j=1}^{n}\phi(gcd(i, ...

  5. [BZOJ4804]欧拉心算:线性筛+莫比乌斯反演

    分析 关于这道题套路到不能再套路了没什么好说的,其实发这篇博客的目的只是为了贴一个线性筛的模板. 代码 #include <bits/stdc++.h> #define rin(i,a,b ...

  6. 【bzoj4804】欧拉心算 解题报告

    [bzoj4804]欧拉心算 Description 给出一个数字\(N\),计算 \[\sum_{i=1}^n\sum_{j=1}^n \varphi(\gcd(i,j))\] Input 第一行为 ...

  7. 【BZOJ4804】欧拉心算 莫比乌斯反演+线性筛

    [BZOJ4804]欧拉心算 Description 给出一个数字N Input 第一行为一个正整数T,表示数据组数. 接下来T行为询问,每行包含一个正整数N. T<=5000,N<=10 ...

  8. BZOJ_4804_欧拉心算_欧拉函数

    BZOJ_4804_欧拉心算_欧拉函数 Description 给出一个数字N Input 第一行为一个正整数T,表示数据组数. 接下来T行为询问,每行包含一个正整数N. T<=5000,N&l ...

  9. bzoj 4804 欧拉心算 欧拉函数,莫比乌斯

    欧拉心算 Time Limit: 15 Sec  Memory Limit: 256 MBSubmit: 408  Solved: 244[Submit][Status][Discuss] Descr ...

随机推荐

  1. 聊聊Vue.js的template编译

    写在前面 因为对Vue.js很感兴趣,而且平时工作的技术栈也是Vue.js,这几个月花了些时间研究学习了一下Vue.js源码,并做了总结与输出. 文章的原地址:https://github.com/a ...

  2. 读书简记-java与模式

  3. C#仪器数据文件解析-PDF文件

    不少仪器工作站输出的数据报告文件为PDF格式,PDF格式用于排版打印,但不易于数据解析,因此解析PDF数据需要首先读取到PDF文件中的文本内容,然后根据内容规则解析有意义的数据信息. C#解析PDF文 ...

  4. C# 使用AngleSharp 爬虫图片

    AngleSharp 简介 AngleSharp是基于.NET(C#)开发的专门解析HTML源码的DLL组件.根据HTML的DOM结构操作HTML,整个DOM已传输到逻辑类结构中.这种结构可以更好的操 ...

  5. makefile讲解

    仅供自己学习使用 一.Makefile介绍 Makefile 或 makefile: 告诉make维护一个大型程序, 该做什么.Makefile说明了组成程序的各模块间的相互 关系及更新模块时必须进行 ...

  6. FZU 2234

    题目为中文,题意略. 这个题目我开始用贪心做bfs两次,这样做是错的,因为两次局部的最优解并不能得出全局的最优解,以下面样例说明: 3 0   10   -1 10   10   10 1   0  ...

  7. UVA - 1592 Database 枚举+map

    思路 直接枚举两列,然后枚举每一行用map依次记录每对字符串出现的是否出现过(字符串最好先处理成数字,这样会更快),如果出现就是"NO",否则就是"YES". ...

  8. nyoj1204 魔法少女 线性DP

    d[i][0]表示到达第i层,且在第i层没有使用魔法的最少时间 d[i][1]表示到达第i层,且在第i层使用魔法通过一层 d[i][2]表示到达第i层,且在第i层使用魔法通过两层 状态转移方程: d[ ...

  9. typeahead + JDK 8 并行流 + redis 高速即时查询.

    感谢JDK8,让我们JAVA 程序员暂时不用担心失业. 有些情况,需要根据用户输入值,即时查询数据库,MYSQL显然不再适合这种业务. mongoDB看似最适合,但是为了这么一个破功能,也不值得特意去 ...

  10. init启动进程

    init启动进程需要读取()配置文件 1,启动init进程的配置文件是/etc/inittab 2,/etc/sysvinit是系统初始化用的   /sbin/init在核心完整的加载后,开始运行系统 ...