题意:

在一个三维空间中,已知(0,0,0)和(n,n,n),求从原点可以看见多少个点

思路:

如果要能看见,即两点之间没有点,所以gcd(a,b,c) = 1         /*来自kuangbin

利用推GCD(a,b)的方法,可以推出GCD(a,b,c) = 1的个数等于mu[i]*(n/i)*(n/i)*(n/i)的和

然而是从0点开始的,而我们只能从1开始计算,因为少了0周围的所有ans初始+3

对于A(0,0,1),所以在计算mu[i]*(n/i)*(n/i)*(n/i)时,我们忽略了A与x,y轴的求出来点的关联情况,所以加上

(n/i)*(n/i),而且有3个点所以每次要加上3*(n/i)*(n/i).
  /*纯属个人理解- -

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <queue>
#include <vector>
#include <algorithm>
#include <functional>
typedef long long ll;
using namespace std;
const int inf = 0x3f3f3f3f;
const int maxn = 1000000+10; int is_prime[maxn];
int prime[maxn];
int sum[maxn];
int mu[maxn];
int tot; int a,b,c,d,k;
ll Min(ll x,ll y)
{
if(x < y) return x;
else return y;
}
void Moblus()
{
tot = 0;
memset(is_prime,0,sizeof(is_prime));
mu[1] = 1;
for(int i = 2; i <= maxn; i++)
{
if(!is_prime[i])
{
prime[tot++] = i;
mu[i] = -1;
} for(int j = 0; j < tot; j++)
{
if(prime[j]*i>maxn)
break;
is_prime[i*prime[j]] = 1;
if(i % prime[j]) //prime[j]不重复
{
mu[i*prime[j]] = -mu[i];
}
else
{
mu[i*prime[j]] = 0;
break;
}
}
}
} int main()
{
int T,n;
Moblus();
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
ll ans = 3;
for(int i = 1;i <= n;i++)
ans += (ll)mu[i]*((ll)(n/i)*(n/i)*(n/i) + (ll)(n/i)*(n/i)*3);
printf("%lld\n",ans);
}
return 0;
}

  

SPOJ VLATTICE(莫比乌斯反演)的更多相关文章

  1. SPOJ - VLATTICE (莫比乌斯反演)

    Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at (N,N,N). How many latt ...

  2. SPOJ PGCD(莫比乌斯反演)

    传送门:Primes in GCD Table 题意:给定两个数和,其中,,求为质数的有多少对?其中和的范围是. 分析:这题不能枚举质数来进行莫比乌斯反演,得预处理出∑υ(n/p)(n%p==0). ...

  3. bzoj 2820 / SPOJ PGCD 莫比乌斯反演

    那啥bzoj2818也是一样的,突然想起来好像拿来当周赛的练习题过,用欧拉函数写掉的. 求$(i,j)=prime$对数 \begin{eqnarray*}\sum_{i=1}^{n}\sum_{j= ...

  4. SPOJ 7001(莫比乌斯反演)

    传送门:Visible Lattice Points 题意:0<=x,y,z<=n,求有多少对xyz满足gcd(x,y,z)=1. 设f(d) = GCD(a,b,c) = d的种类数 : ...

  5. SPOJ 7001 VLATTICE - Visible Lattice Points(莫比乌斯反演)

    题目链接:http://www.spoj.com/problems/VLATTICE/ 题意:求gcd(a, b, c) = 1    a,b,c <=N 的对数. 思路:我们令函数g(x)为g ...

  6. SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演 难度:3

    http://www.spoj.com/problems/VLATTICE/ 明显,当gcd(x,y,z)=k,k!=1时,(x,y,z)被(x/k,y/k,z/k)遮挡,所以这道题要求的是gcd(x ...

  7. SPOJ VLATTICE Visible Lattice Points (莫比乌斯反演基础题)

    Visible Lattice Points Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at ...

  8. [SPOJ VLATTICE]Visible Lattice Points 数论 莫比乌斯反演

    7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...

  9. SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演

    这样的点分成三类 1 不含0,要求三个数的最大公约数为1 2 含一个0,两个非零数互质 3 含两个0,这样的数只有三个,可以讨论 针对 1情况 定义f[n]为所有满足三个数最大公约数为n的三元组数量 ...

  10. SPOJ VLATTICE Visible Lattice Points(莫比乌斯反演)题解

    题意: 有一个\(n*n*n\)的三维直角坐标空间,问从\((0,0,0)\)看能看到几个点. 思路: 按题意研究一下就会发现题目所求为. \[(\sum_{i=1}^n\sum_{j=1}^n\su ...

随机推荐

  1. GPUImage实战问题解决

    在项目中遇到了使用完GPUImage以后,内存不释放的问题,翻阅官方API,找到了解决方法: deinit{ GPUImageContext.sharedImageProcessingContext( ...

  2. 基本数据类型 Symbol

    ES6 规范之前, JavaScript 一共有六种数据类型,分别是五种基本数据类型: string . number , boolean , null , undefined ,和一种引用数据类型: ...

  3. ctf变量覆盖漏洞:

    1.变量覆盖: ①:针对extract函数的变量覆盖漏洞: <?php @error_reporting(E_ALL^E_NOTICE); require('config.php'); if($ ...

  4. python 模块部分补充知识

    一.hashlib hashlib 模块主要用于加密相关的操作,代替了md5模块和sha模块,主要提供 SHA1, SHA224, SHA256, SHA384, SHA512 ,MD5 算法. 实例 ...

  5. AngularJS1.X学习笔记7-过滤器

    最近参加笔试被虐成狗了,感觉自己的算法太弱了.但是还是先花点事件将这个AngularJS学习完.今天学习filter 一.内置过滤器 (1)过滤单个数据值 <!DOCTYPE html> ...

  6. WPF 自定义TextBox带水印控件,可设置圆角

    一.简单设置水印TextBox控件,废话不多说看代码: <TextBox TextWrapping="Wrap" Margin="10" Height=& ...

  7. Android开发——发布第三方库到JitPack上

    前言: 看到大神们的写的第三方控件,比较好用,我们使用的时候直接是在gradle上加上代码就可以使用了,现在到我们写了一个第三方控件,想要别人使用的时候也是直接在gradle加上相关的代码就可以用了, ...

  8. 小技巧-ASP.Net session保存在数据库服务器

    引用博客:http://www.cnblogs.com/lykbk/archive/2013/01/13/hf576856868.html web Form 网页是基于HTTP的,它们没有状态, 这意 ...

  9. 对scrapy经典框架爬虫原理的理解

    1,spider打开某网页,获取到一个或者多个request,经由scrapy engine传送给调度器schedulerrequest特别多并且速度特别快会在scheduler形成请求队列queue ...

  10. scrapy爬取极客学院全部课程

    # -*- coding: utf-8 -*- # scrapy爬取极客学院全部课程 import scrapy from pyquery import PyQuery as pq from jike ...