4361: isn

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 375  Solved: 186
[Submit][Status][Discuss]

Description

给出一个长度为n的序列A(A1,A2...AN)。如果序列A不是非降的,你必须从中删去一个数,
这一操作,直到A非降为止。求有多少种不同的操作方案,答案模10^9+7。
 

Input

第一行一个整数n。
接下来一行n个整数,描述A。

Output

一行一个整数,描述答案。

Sample Input

4
1 7 5 3

Sample Output

18

HINT

1<=N<=2000

先找出长度为i的非降序列方案数,对于每个方案在原序列中删除其它元素可得答案
f[i][j]表示长度为i,以第j个元素结尾构成非降序列方案数
转移n^3 bit优化至n^2*log2(n)
g[i]表示长度为i的非降序列个数,可以对f[][]求和得到

接下来考虑每个方案,在原序列中删除一些数来得到答案

对于长度为i的非降序列,可以在原串中删去剩余的n-i个元素来得到
由于删除是有顺序的,所以删除方案是 (n-i)!
那么对于每个i,它贡献的答案就是g[i]*(n-i)!
但是,由于有些删除方法到长度i+1时就应该停止,所以 -(n-i-1)!*(i+1)*g[i+1] 不管i+1合法或者非法,到i肯定不合法,所以减去
*(i+1)是因为还要选择一个删去才得到长度i的序列
那么ans=sum(g[i]*(n-i)!-(n-i-1)!*(i+1)*g[i+1])

 #include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define ll long long
#define mod 1000000007
#define N 2005
using namespace std;
int a[N],b[N],fac[N],n;ll f[N][N],c[N],g[N];
void plu(ll &x,ll y){
x+=y;x>mod?x-=mod:;
}
void update(int p,int val){
while(p<=n){
plu(c[p],val);
p+=p&-p;
}
}
ll sum(int p){
ll t=;
while(p){
plu(t,c[p]);
p-=p&-p;
}
return t;
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&a[i]),b[i]=a[i];
sort(b+,b++n);
int len=unique(b+,b++n)-b-;
for(int i=;i<=n;i++)
a[i]=lower_bound(b+,b++len,a[i])-b;
for(int i=;i<=n;i++)f[][i]=;
for(int i=;i<=n;i++){
memset(c,,sizeof(c));
for(int j=;j<=n;j++){
plu(f[i][j],sum(a[j]));
update(a[j],f[i-][j]);
}
}
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
plu(g[i],f[i][j]);
ll ans=;
fac[]=;
for(int i=;i<=n;i++)fac[i]=(1ll*fac[i-]*i)%mod;
for(int i=n;i;i--)
ans=(ans+(g[i]*fac[n-i])%mod-((g[i+]*(i+))%mod*fac[n-i-])%mod)%mod;
ans<?ans+=mod:;
cout<<ans;
return ;
}

bzoj4361isn 容斥+bit优化dp的更多相关文章

  1. 【UOJ#422】【集训队作业2018】小Z的礼物(min-max容斥,轮廓线dp)

    [UOJ#422][集训队作业2018]小Z的礼物(min-max容斥,轮廓线dp) 题面 UOJ 题解 毒瘤xzy,怎么能搬这种题当做WC模拟题QwQ 一开始开错题了,根本就不会做. 后来发现是每次 ...

  2. [Hdu-5155] Harry And Magic Box[思维题+容斥,计数Dp]

    Online Judge:Hdu5155 Label:思维题+容斥,计数Dp 题面: 题目描述 给定一个大小为\(N*M\)的神奇盒子,里面每行每列都至少有一个钻石,问可行的排列方案数.由于答案较大, ...

  3. LOJ3053 十二省联考2019 希望 容斥、树形DP、长链剖分

    传送门 官方题解其实讲的挺清楚了,就是锅有点多-- 一些有启发性的部分分 L=N 一个经典(反正我是不会)的容斥:最后的答案=对于每个点能够以它作为集合点的方案数-对于每条边能够以其两个端点作为集合点 ...

  4. LOJ3124 CTS2019 氪金手游 概率、容斥、树形DP

    传送门 D2T3签到题可真是IQ Decrease,概率独立没想到然后就20pts滚粗了 注意题目是先对于所有点rand一个权值\(w\)然后再抽卡. 先考虑给出的关系是一棵外向树的情况.那么我们要求 ...

  5. ARC 093 F Dark Horse 容斥 状压dp 组合计数

    LINK:Dark Horse 首先考虑1所在位置. 假设1所在位置在1号点 对于此时剩下的其他点的方案来说. 把1移到另外一个点 对于刚才的所有方案来说 相对位置不变是另外的方案. 可以得到 1在任 ...

  6. bzoj2669[cqoi2012]局部极小值 容斥+状压dp

    2669: [cqoi2012]局部极小值 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 774  Solved: 411[Submit][Status ...

  7. Codeforces.348D.Turtles(容斥 LGV定理 DP)

    题目链接 \(Description\) 给定\(n*m\)的网格,有些格子不能走.求有多少种从\((1,1)\)走到\((n,m)\)的两条不相交路径. \(n,m\leq 3000\). \(So ...

  8. 【BZOJ】4767: 两双手【组合数学】【容斥】【DP】

    4767: 两双手 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1057  Solved: 318[Submit][Status][Discuss] ...

  9. [BZOJ2669][CQOI2012]局部最小值(容斥+状压DP)

    发现最多有8个限制位置,可以以此为基础DP和容斥. $f_{i,j}=f_{i-1,j}\times (cnt_j-i+1)+\sum_{k\subset j} f_{i-1,k}$ $cnt_j$表 ...

随机推荐

  1. 小草手把手教你LabVIEW串口仪器控制—安装使用仪器现有驱动

    声明:很多仪器是没有驱动的.所以,具体问题具体分析.另外声明:所谓的驱动,也就是封装好的底层的串口通信程序,也是程序而已,只不过别人帮你做成了子 VI,让自己容易用.所以:不要弄混淆了概念.国外的很多 ...

  2. 前端面试题之html

    1.简述<!DOCTYPE> 的作用,标准模式和兼容模式各有什么区别? <!DOCTYPE> 位于文档的第一行,告知浏览器使用哪种规范. 如果不写DOCTYPE,浏览器会进入混 ...

  3. HP DL380服务器RAID信息丢失数据恢复方法和数据恢复过程分享

    [数据恢复故障描述]    客户服务器属于HP品牌DL380系列,存储是由6块73GB SAS硬盘组成的RAID5,操作系统是WINDOWS 2003 SERVER,主要作为企业部门内部的文件服务器来 ...

  4. Linq 巧用 Max,Sum

    IList<, , , , , }; var sum1 = intList.Sum(s => { == ) { return s; } ; }); Console.WriteLine(&q ...

  5. angular2 学习笔记 ( animation 动画 )

    refer : https://angular.io/guide/animations https://github.com/angular/angular/blob/master/packages/ ...

  6. python网络爬虫与信息提取 学习笔记day2

    Day2: 查看robots协议: 查看京东的robots协议 查看百度的robots协议,可以看到百度拒绝了搜狗的爬虫233 爬取京东商品页面相关信息: import requests url = ...

  7. maven的使用之一简单的安装

    首先,我们知道,在传统的项目中,我们会导入一堆的jar包,那样的话,我们会发现我们的jar包的大小已经占了整个项目大小的90%以上,甚至更多,而且,我们的jar包只能自己使用,如果 其他人想用的话,还 ...

  8. php 数组对象之间的转换

    在之前我写过php返回json数据简单实例 从5.2版本开始,PHP原生提供json_encode()和json_decode()函数,前者用于编码,后者用于解码. 一.json_encode() 1 ...

  9. 前端学习之jquery

    前端学习之jquery 1.   什么是jQuery对象? jQuery对象就是通过jQuery包装DOM对象后产生的对象.jQuery对象是jQuery独有的.如果一个对象是jQuery对象,那么它 ...

  10. Linux(一)VMware虚拟机的安装

    vmware的安装文件: 链接:https://pan.baidu.com/s/1QGjNqRZzE-vV7Af0PI2QYA 密码:omfe 1.1 首先下载安装包 安装包的内容 1.2 双击exe ...