hdu 5885 FFT
XM Reserves
Time Limit: 10000/10000 MS (Java/Others) Memory Limit: 102400/102400 K (Java/Others)
Total Submission(s): 99 Accepted Submission(s): 45
We call it XM, which is the driving force behind all of our actions in Ingress.
XM allows us to construct items through hacking portals, to attack enemy portals, make links and create fields.
We try to collect XM from the ground. XM concentration come from location based services, meaning that areas with a lot of foot traffic have higher amounts versus places that don't.
You can collect XM by moving through those areas.
The XM will be automatically harvested by your Scanner when it is within your interaction circle/range.
Alice decides to select a location such that she can collect XM as much as possible.
To simplify the problem, we consider the city as a grid map with size `n*m' numbered from (0,0) to (n−1,m−1).
The XM concentration inside the block (i,j) is p(i,j).
The radius of your interaction circle is r.
We can assume that XM of the block (i,j) are located in the centre of this block.
The distance between two blocks is the Euclidean distance between their centres.
Alice stands in the centre of one block and collects the XM.
For each block with the distance d smaller than r to Alice, and whose XM concertation is p(i,j), Alice's scanner can collects p(i,j)/(1+d) XM from it.
Help Alice to determine the maximum XM which she can collect once he stands in the centre of one block.
For each case, the first line consists two integers n,m (1≤n,m≤500) and one float-point number r (0≤r≤300).
Each of the following n line consists m non-negative float-point numbers corresponding to the XM concentrations inside each blocks.
Your answers should be rounded to three decimal places.
4 3 2 9
3 4 3 2
9 4 3 2
2 3 0 1
6 3 4 3 1
/*
hdu 5885 FFT卷积 problem:
给出一个n×m的格子,距离它小于等于r的那些格子都会贡献p(i,j)/(d+1), d为两个格子的距离. p[i][j]为格子的价值
选择一个格子, 使得贡献和最大. solve:
参考:https://async.icpc-camp.org/d/558-2016-icpc
因为小于r的格子都会给当前格子贡献, 所以可以考虑先计算出所有格子对<r的其它格子的贡献.那么最后一次遍历就能找出
出最大值.那么会处理出来一个 (n+r+r,m+r+r)的矩阵.
然后就是如何计算, 格子(i,j)按照(x,y)移动后会到格子(i+x,j+y).坐标相加
如果把所有方向处理成一个一维矩阵,那么当前点与它们相乘后的位置就是当前点能到达的目标位置(卷积,坐标相加)
都转换成一维.
0*M+0 0*M+1 0*M+2
0*M+0 0*M+1 0*M+2 1*M+0 ... (方向)
---->
0*M+0 0*M+1 0*M+2 1*M+0
0*M+1 0*M+2 1*M+0
求卷积后坐标之间是存在一定关系的.类似于A,B集合中有多少a+b=c那种题的思想. (新技能get)
(看代码想了很久才懂 TAT.. )
用a[i*M + j]保存p(i,j), b[i*M+j]保存 1/d.
c = a*b, 那么第i*M + j就是i,j的贡献和. 本来最开始用的m但是发现有问题,因为一行处理后有m+2*r个点,换成M就好了....
hhh-2016-09-21 21:10:30
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <vector>
#include <map>
#include <math.h>
#define lson i<<1
#define rson i<<1|1
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define key_val ch[ch[root][1]][0]
using namespace std;
const int maxn = 1e6 + 1000;
const int inf = 0x3f3f3f3f;
const ll mod = 1e9 + 7;
const double eps = 1e-7;
template<class T> void read(T&num)
{
char CH;
bool F=false;
for(CH=getchar(); CH<'0'||CH>'9'; F= CH=='-',CH=getchar());
for(num=0; CH>='0'&&CH<='9'; num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p)
{
if(!p)
{
puts("0");
return;
}
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
} const double PI = acos(-1.0); struct Complex
{
double x,y;
Complex(double _x = 0.0,double _y = 0.0)
{
x = _x;
y = _y;
}
Complex operator-(const Complex &b)const
{
return Complex(x-b.x,y-b.y);
}
Complex operator+(const Complex &b)const
{
return Complex(x+b.x,y+b.y);
}
Complex operator*(const Complex &b)const
{
return Complex(x*b.x-y*b.y,x*b.y+y*b.x);
}
}; void change(Complex y[],int len)
{
int i,j,k;
for(i = 1,j = len/2; i < len-1; i++)
{
if(i < j) swap(y[i],y[j]);
k = len/2;
while(j >= k)
{
j-=k;
k/=2;
}
if(j < k) j+=k;
}
} void fft(Complex y[],int len,int on)
{
change(y,len);
for(int h = 2; h <= len; h <<= 1)
{
Complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
for(int j = 0; j < len; j+=h)
{
Complex w(1,0);
for(int k = j; k < j+h/2; k++)
{
Complex u = y[k];
Complex t = w*y[k+h/2];
y[k] = u+ t;
y[k+h/2] = u-t;
w = w*wn;
}
}
}
if(on == -1)
{
for(int i = 0; i < len; i++)
y[i].x /= len;
}
} double dis(int a,int b)
{
return sqrt(a*a + b*b);
} Complex a[2*maxn];
Complex b[2*maxn]; int main()
{
int k;
int n,m,limit;
double x,r;
while(scanf("%d%d%lf",&n,&m,&r) != EOF)
{
limit =0, k = 1;
while(r >= limit)
{
limit ++ ;
}
limit -= 1;
int M = m +limit + limit;
while(k < (n+r+r)*(m+r+r))
k <<= 1; for(int i = 0;i < k;i++)
{
a[i] = b[i] = 0;
}
for(int i = 0;i < n;i++)
{
for(int j = 0;j < m;j++)
{
read(x);
a[i*M + j] = x;
}
}
fft(a,k,1);
for(int i = -limit;i <= limit;i++)
{
for(int j = -limit;j <= limit;j++)
{
double len = dis(i,j);
if( r > len)
b[(i+limit) * M + j + limit] = 1.0/(len+1); }
} fft(b,k,1);
for(int i = 0;i < k;i++)
a[i] = a[i] * b[i];
fft(a,k,-1);
double ans = 0;
for(int i = 0;i < n;i++)
{
for(int j = 0;j < m;j++)
{
ans = max(ans,a[(i + limit) * M + j + limit].x);
}
}
printf("%.3f\n",ans);
}
return 0;
}
hdu 5885 FFT的更多相关文章
- hdu 5830 FFT + cdq分治
Shell Necklace Time Limit: 16000/8000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)T ...
- HDU 1402 FFT 大数乘法
$A * B$ FFT模板题,找到了一个看起来很清爽的模板 /** @Date : 2017-09-19 22:12:08 * @FileName: HDU 1402 FFT 大整数乘法.cpp * ...
- hdu 5885 XM Reserves (FFT建模)
Problem Description As an eligible Ingress Resistance Agent you should know your power source, the E ...
- HDU 4609 FFT模板
http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意:给你n个数,问任意取三边能够,构成三角形的概率为多少. 思路:使用FFT对所有长度的个数进行卷积(\ ...
- hdu 4609 FFT
题意:给出一堆数,问从这些数中取3个能组成三角形的概率? sol:其实就是问从这些数里取3个组成三角形有多少种取法 脑洞大开的解法:用FFT 设一开始的数是1 3 3 4 作一个向量x,其中x[i]= ...
- HDU 1402 fft 模板题
题目就是求一个大数的乘法 这里数字的位数有50000的长度,按平时的乘法方式计算,每一位相乘是要n^2的复杂度的,这肯定不行 我们可以将每一位分解后作为系数,如153 = 1*x^2 + 5*x^1 ...
- hdu 1402 FFT(模板)
A * B Problem Plus Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- HDU 4609 FFT+组合数学
3-idiots Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- HDU 4609 FFT+各种分类讨论
思路: http://www.cnblogs.com/kuangbin/archive/2013/07/24/3210565.html 其实我是懒得写了.... 一定要define int long ...
随机推荐
- 一、Django的基本用法
学习Django有一段时间了,整理一下,充当笔记. MVC 大部分开发语言中都有MVC框架 MVC框架的核心思想是:解耦 降低各功能模块之间的耦合性,方便变更,更容易重构代码,最大程度上实现代码的重用 ...
- 根据HTML5的新方法 drag & drop 方法实现表格拖拽实例
上一次学习了html5的drag和drop方法,传送门 就自己写了个例子加深自己对drag和drop的理解.不过一开始不是很简单,遇到了不少问题.还好网络万能的,什么都能查到,总算完成了. 说明和详 ...
- WebApi一个控制器中定义多个Get方法。
问题:怎样解决一个ApiController中定义多个Get方法或者Post方法? 答:要想实现一个ApiController中定义多个Get方法或者Post方法,则需要在WebApiConfig类中 ...
- WebAPI 跨域解决方案.
先下载支持跨域的.dll,然后using System.Web.Http.Cors. 我把webapi解决方案部署到IIS上了.测试过后可以解决跨域. 方案一(用了*号,这样有安全隐患.): 直接在w ...
- 租户、租户管理员、部门管理员和开发者在APIGW中的角色
一.参与者 1.vdcId:租户 2.运营管理员 operator: 一种角色 创建开发商 审批外置服务,如:hadoop集群 审批内置服务,如:<API使用申请> 3.租户管理员 ...
- 大数据学习总结(4)参考splunk架构
- 模板引擎Jade详解
有用的符号: | 竖杠后的字符会被原样输出 · 点表示下一级的所有字符都会被原样输出,不再被识别.(就是|的升级版,实现批量) include 表示引用外部文件 短杠说明后面跟着的字符只是一段代码(与 ...
- javascript实现继承3种方式: 原型继承、借用构造函数继承、组合继承,模拟extends方法继承
javascript中实现继承的三种方式:原型继承.借用构造函数继承.混合继承: /* js当中的继承 js中 构造函数 原型对象 实力对象的关系: 1 构造函数.prototype = 原型对象 2 ...
- SendMessage 遇到的神坑
场景 两个进程A和B,需要从A中设置B中的文本框的内容 过程 x.x.x.x. 成功获取了B中的内容,惊喜,离成功更近异步 xxxx ***** ....... x.x.x.x. 大约查找了几百个网页 ...
- 初学Java Web(4)——Servlet学习总结
经过一段时间的学习,对于Servlet有了新的不一样的见解,在这里做一下总结,将近来学习到的知识总结一下. Servlet 的请求流程 浏览器发出请求:http://localhost:80/xxx1 ...