[HAOI2011]向量
题目描述
给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y)。
说明:这里的拼就是使得你选出的向量之和为(x,y)
输入输出格式
输入格式:
第一行数组组数t,(t<=50000)
接下来t行每行四个整数a,b,x,y (-2*10^9<=a,b,x,y<=2*10^9)
输出格式:
t行每行为Y或者为N,分别表示可以拼出来,不能拼出来
输入输出样例
说明
样例解释:
第一组:(2,1)+(1,2)=(3,3)
第三组:(-1,0)+(-1,0)+(0,1)+(0,1)+(0,1)=(-2,3)
题解来自520dalao%%%
$k(a,b)+q(b,a)+w(a,-b)+c(b,-a)=(x,y)$
--> $(k+w)a+(q+c)b=x, (k-w)b+(q-c)a=y$ .
由裴蜀定理可得:$ax+by=c$ ,x和y有整数解的充要条件是 $gcd(a,b)|c$ ,
证明:令$a=pgcd(a,b),\ b=qgcd(a,b)$ ,则原式=$(px+qy)gcd(a,b)=c$ ,显然因为$gcd(a,b)$ 为整数,而要使x和y为整数,则$gcd(a,b)|c$ 。
我们回到开始的方程组$(k+w)a+(q+c)b=x,(k-w)b+(q-c)a=y$ 。由裴蜀定理易得:
使$(k+w),(q+c),(k-w),(q-c)$ 均为整数的充要条件是:
$gcd(a,b)|x$ 且$gcd(a,b)|y$ 。但是注意到(k+w),(k-w)有整数解不一定k和w有整数解((q+c)和(q-c)是同理的)。此时不妨设$(k+w)=f,(k-w)=g$ ,则$k=(f+g)/2,w=(f-g)/2$ ,因为$2|(f+g)$ 且$2|(f-g)$ ,显然要使k和w均为整数则f和g均为偶数或均为奇数((q+c)和(q-c)同理)。
于是我们考虑这四种情况:
1、当(k+w)、(k-w)、(q+c)、(q-c)均为偶数时,$(k+w)a+(q+c)b=x$ 提公因数2结合$gcd(a,b)|x $ => $ 2gcd(a,b)|x$ 同理 $gcd(a,b)|y$
2、当(k+w)和(k-w)为偶数,(q+c)和(q-c)为奇数时,$(k+w)a+(q+c)b=x$ 先左右两边同加b,再提公因数2 结合$gcd(a,b)|x$ --> $2gcd(a,b)|x+b$ 同理 $2gcd(a,b)|y+a$
3、当(k+w)和(k-w)为奇数,(q+c)和(q-c)为偶数时,$(k+w)a+(q+c)b=x$ 先左右两边同加a,再提公因数2 结合$gcd(a,b)|x $ -->$2gcd(a,b)|x+a$ 同理 $2gcd(a,b)|y+b$
4、当(k+w)、(k-w)、(q+c)、(q-c)均为奇数时,$(k+w)a+(q+c)b=x$ 先左右两边同加a+b,再提公因数2 结合$gcd(a,b)|x$ --> $2gcd(a,b)|x+a+b$ 同理 $2gcd(a,b)|y+a+b$
只要满足上述的任意一种情况,则说明本题k、w、q、c有整数解,说明可行,否则说明无解。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long lol;
lol a,b,x,y;
lol gcd(lol a,lol b)
{
if (!b) return a;
return gcd(b,a%b);
}
int main()
{int T,flag;
cin>>T;
while (T--)
{
scanf("%lld%lld%lld%lld",&a,&b,&x,&y);
lol d=gcd(*a,*b);
flag=;
if (x%d==&&y%d==) flag=;
if ((x+a)%d==&&(y+b)%d==) flag=;
if ((x+b)%d==&&(y+a)%d==) flag=;
if ((x+a+b)%d==&&(y+a+b)%d==) flag=;
if (flag) printf("Y\n");
else printf("N\n");
}
}
Description
给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y)。
说明:这里的拼就是使得你选出的向量之和为(x,y)
Input
第一行数组组数t,(t<=50000)
接下来t行每行四个整数a,b,x,y (-2*109<=a,b,x,y<=2*109)
Output
t行每行为Y或者为N,分别表示可以拼出来,不能拼出来
Sample Input
2 1 3 3
1 1 0 1
1 0 -2 3
Sample Output
N
Y
HINT
样例解释:
第一组:(2,1)+(1,2)=(3,3)
第三组:(-1,0)+(-1,0)+(0,1)+(0,1)+(0,1)=(-2,3)
[HAOI2011]向量的更多相关文章
- 【BZOJ2299】[HAOI2011]向量(数论)
[BZOJ2299][HAOI2011]向量(数论) 题面 BZOJ 洛谷 题解 首先如果我们的向量的系数假装可以是负数,那么不难发现真正有用的向量只有\(4\)个,我们把它列出来.\((a,b)(a ...
- 【BZOJ 2299】 2299: [HAOI2011]向量 (乱搞)
2299: [HAOI2011]向量 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1255 Solved: 575 Description 给你一 ...
- P2520 [HAOI2011]向量
题目描述 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量 ...
- 【[HAOI2011]向量】
靠瞎猜的数学题 首先我们先对这些向量进行一顿组合,会发现\((a,b)(a,-b)\)可以组合成\((2a,0)\),\((b,-a)(b,a)\)可以组合成\((2b,0)\),同理\((0,2a) ...
- BZOJ2299 [HAOI2011]向量 【裴蜀定理】
题目链接 BZOJ2299 题解 题意就是给我们四个方向的向量\((a,b),(b,a),(-a,b),(b,-a)\),求能否凑出\((x,y)\) 显然我们就可以得到一对四元方程组,用裴蜀定理判断 ...
- 牛客19985 HAOI2011向量(裴属定理,gcd)
https://ac.nowcoder.com/acm/problem/19985 看到标签“裴属定理”就来做下,很眼熟,好像小学奥数学过.. 题意:给你a,b,x,y,你可以任意使用(a,b), ( ...
- [HAOI2011] 向量 - 裴蜀定理
给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y) ...
- BZOJ2299: [HAOI2011]向量
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2299 题解:乱搞就可以了... 不妨认为有用的只有(a,b)(a,-b)(b,a)(b,-a) ...
- luogu P2520 [HAOI2011]向量
传送门 一堆人说数论只会gcd,我连gcd都不会,菜死算了qwq Orzyyb 这题欺负我数学不好qwq 首先可以发现实际上有如下操作:x或y±2a,x或y±2b,x+a y+b,x+b y+a(后面 ...
随机推荐
- c++第0次作业
1.你认为大学的学习生活.同学关系.师生应该是怎样? 随着大学生活的慢慢到来,我开始领悟到大学并不是自由的天堂,相反,我们更加的走进社会这个牢笼.在这个牢笼中有着从前的我们并不需要在意和考虑的规则与问 ...
- 学号:201621123032 《Java程序设计》第14周学习总结
1:本周学习总结 2:使用数据库技术改造你的系统 2.1:简述如何使用数据库技术改造你的系统.要建立什么表?截图你的表设计. 建立一个图书馆的表 建立读者用户个人的借书信息表---但是目前没有办法做到 ...
- *.db-journal 是什么(android sqlite )数据库删除缓存
sqlite的官方文档,发现该文件是sqlite的一个临时的日志文件,主要用于sqlite数据库的事务回滚操作了.在事务开始时产生,在事务操作完毕时自动删除,当程序发生崩溃或一些意外情况让程序非法结束 ...
- 20145237 《Java程序设计》第九周学习总结
20145237 <Java程序设计>第九周学习总结 教材学习内容总结 第十六章 整合数据库 JDBC入门 ·数据库本身是个独立运行的应用程序 ·撰写应用程序是利用通信协议对数据库进行指令 ...
- django搭建web (二) urls.py
URL模式: 在app下的urls.py中 urlpatterns=[ url(正则表达式,view函数,参数,别名,前缀)] urlpatterns=[ url(r'^hello/$',hello. ...
- Python web服务器
Python 配置wsgi接口# 引入Python wsgi包 from wsgiref.simple_server import make_server # 撰写服务器端程序代码 def Appli ...
- LOW版统计词频
import string path = 'waldnn' with open(path,'r') as text: words = [raw_word.strip(string.punctuatio ...
- Ansible自动化运维工具-上
[Ansible特点] 1)Ansible与saltstack均是基于Python语言开发的 2)安装使用简单,基于不同插件和模块实现各种软件,平台,版本的管理以及支持虚拟容器多层级的部署 3)不需要 ...
- 用javascript做别踩白块游戏1
初学Javascript做的一个别踩白块小游戏,代码简陋,如下: <!DOCTYPE html> <html> <head> <!-- 禁用缩放功能 --&g ...
- unity A*寻路 (三)A*算法
这里我就不解释A*算法 如果你还不知道A*算法 网上有很多简单易懂的例子 我发几个我看过的链接 http://www.cnblogs.com/lipan/archive/2010/07/01/1769 ...