●杜教筛入门(BZOJ 3944 Sum)
入门杜教筛啦。
http://blog.csdn.net/skywalkert/article/details/50500009(好文!)
可以在$O(N^{\frac{2}{3}})或O(N^{\frac{3}{4}})$的复杂度内解决求某些数论函数f(n)(或f的前缀和S(n)$)的值。
先来看看原理是什么。(接下来推导如何求数论函数f(n)的前缀和S(n))
现在有两个数论函数$f( )和g( )$
(同时定义f的前缀和函数$S(n)=\sum_{i=1}^{n}f(i)$)
有狄利克雷乘积可知:
$$f*g(n)=\sum_{i|n}f(\frac{n}{i})g(i)\quad(=\sum_{i|n}f(i)g(\frac{n}{i}))$$
那么,则有如下结论:
$$\sum_{n=1}^{N}f*g(n)=\sum_{i=1}^{N}g(i)S(\lfloor \frac{N}{i} \rfloor)$$
证明如下:
$$\begin{align*}
\sum_{n=1}^{N}f*g(n)&=\sum_{n=1}^{N}\sum_{i|n}f(\frac{n}{i})g(i)\\
&=\sum_{i=1}^{N}g(i)\sum_{i=1}^{\lfloor \frac{N}{i} \rfloor}f(i)\\
&=\sum_{i=1}^{N}g(i)S(\lfloor \frac{N}{i} \rfloor)
\end{align*}$$
然后把右边和式里的$g(1)S(N)$那一项提出来得到:
$$g(1)S(N)=\sum_{n=1}^{N}f*g(n)-\sum_{i=2}^{N}g(i)S(\lfloor \frac{N}{i} \rfloor)$$
通常令数论函数$g(n)=I(n)=1$(恒等函数$l(n)=1$,完全积性)
到目前为止,上式就是我们进行杜教筛的基础了。
因为左边的S(N)就是答案,而右边同时又可以用分块的方式计算。
不少刚刚入门的同学会有一个疑问,等式右边的后半部分确实可以分块计算,但是前半部分怎么办呢?
其实,一般前面的$\sum_{n=1}^{N}f*g(n)$都是可以O(1)计算出来的。
下面来看两个例子:
(一)、求莫比乌斯函数$\mu(n)$的前缀和函数$S(n),n \leq 10^9$
首先添加一个辅助函数g(n)=l(n)=1,
然后重复上面的过程,可以得到
$$g(1)S(N)=\sum_{n=1}^{N}\mu*g(n)-\sum_{i=2}^{N}g(i)S(\lfloor \frac{N}{i} \rfloor)$$
$$S(N)=\sum_{n=1}^{N}\mu*g(n)-\sum_{i=2}^{N}S(\lfloor \frac{N}{i} \rfloor)$$
现在来看看$\sum_{n=1}^{N}\mu*g(n)$怎么求:
$$\begin{aligned}
\sum_{n=1}^{N}\mu*g(n)&=\sum_{n=1}^{N}\sum_{i|n}\mu(i)g(\frac{n}{i})\\
&=\sum_{n=1}^{N}\sum_{i|n}\mu(i)\\
&=\sum_{n=1}^{N}[n==1]\\
&=1
\end{aligned}$$
上面的化简用到了刚刚学莫比乌斯函数时的一个结论:
$$\sum_{i|n}\mu(i)=[n==1]$$
到此,我们得到:
$$S(N)=1-\sum_{i=2}^{N}S(\lfloor \frac{N}{i} \rfloor)$$
实现方式是分块计算+记忆化递归处理(用map或者hash表记忆化)
(二). 求欧拉函数$\phi(n)$的前缀和函数$S(n),n \leq 10^9$
同样地,添加一个辅助函数g(n)=l(n)=1,
然后重复上面的过程,可以得到
$$g(1)S(N)=\sum_{n=1}^{N}\phi*g(n)-\sum_{i=2}^{N}g(i)S(\lfloor \frac{N}{i} \rfloor)$$
$$S(N)=\sum_{n=1}^{N}\phi*g(n)-\sum_{i=2}^{N}S(\lfloor \frac{N}{i} \rfloor)$$
$\sum_{n=1}^{N}\phi*g(n)$又怎样求呢:
$$\begin{aligned}
\sum_{n=1}^{N}\phi*g(n)&=\sum_{n=1}^{N}\sum_{i|n}\phi(i)g(\frac{n}{i})\\
&=\sum_{n=1}^{N}\sum_{i|n}\phi(i)\\
&=\sum_{n=1}^{N}n\\
&=\frac{(1+n)n}{2}
\end{aligned}$$
上面的化简用到了这样一个结论:
$$\sum_{i|n}\phi(i)=n$$
所以我们得到:
$$S(N)=\frac{(1+n)n}{2}-\sum_{i=2}^{N}S(\lfloor \frac{N}{i} \rfloor)$$
这个同样是实现方式是分块计算+记忆化递归处理(用map或者hash表记忆化)
下面是代码具体实现:
关于时间复杂度的分析不太会。记了一下结论。
通常不做任何处理,就直接杜教筛的话(分块计算+记忆化递归处理),复杂度是$O(N^{\frac{3}{4}})$
但是如果预处理出前$N^{\frac{2}{3}}$个前缀和,那么总的复杂度就可以降到$O(N^{\frac{2}{3}})$
BZOJ 3944: Sum,杜教筛入门题。
多个询问,给出N,求$\sum_{n=1}^{N}\mu(n)$和$\sum_{n=1}^{N}\phi(n)$
也就是求上面的两个例子。
这里直接给出代码,用的是预处理前$N^{\frac{2}{3}}$个前缀和+hash表进行记忆化。
复杂度$O(N^{\frac{2}{3}})$
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define DJM 1664510
//#define DJM 10
#define ll long long
using namespace std;
ll phi[DJM+50],mu[DJM+50];
struct Pii{
int x; ll a,b;
Pii(int _x=0,ll _a=0,ll _b=0):x(_x),a(_a),b(_b){}
}nl;
struct Hash_Table{//
#define hmod 1425367
int nxt[hmod],head[hmod],hnt;
Pii info[hmod];
Hash_Table(){hnt=2;}
void Push(Pii rtm){
static int u; u=rtm.x%hmod;
info[hnt]=rtm; nxt[hnt]=head[u]; head[u]=hnt++;
}
Pii Find(int x){
static int u; u=x%hmod;
for(int i=head[u];i;i=nxt[i]) if(info[i].x==x) return info[i];
return nl;
}
}H;
void Sieve(){
static bool np[DJM+50];
static int prime[DJM+50],pnt;
phi[1]=mu[1]=1;
for(int i=2;i<=DJM;i++){
if(!np[i]) prime[++pnt]=i,mu[i]=-1,phi[i]=i-1;
for(int j=1;j<=pnt&&i<=DJM/prime[j];j++){
np[i*prime[j]]=1;
if(i%prime[j]){mu[i*prime[j]]=-mu[i]; phi[i*prime[j]]=phi[i]*phi[prime[j]];}
else{phi[i*prime[j]]=phi[i]*prime[j]; break;}
}
}
for(int i=2;i<=DJM;i++) mu[i]+=mu[i-1],phi[i]+=phi[i-1];
}
Pii DJ_Sieve(int x){
if(x<=DJM) return Pii(x,mu[x],phi[x]);
if(H.Find(x).x) return H.Find(x);
Pii tmp,now=Pii(x,1,(1ll+x)*x/2);
for(ll i=2,last;i<=x;i=last+1){
last=x/(x/i); tmp=DJ_Sieve(x/i);
now.a-=tmp.a*(last-i+1); now.b-=tmp.b*(last-i+1);
}
H.Push(now); return now;
}
int main(){
Sieve();
int Case,n; Pii ans;
scanf("%d",&Case);
for(int i=1;i<=Case;i++){
scanf("%d",&n);
if(n==0) {printf("0 0\n"); continue;}
ans=DJ_Sieve(n);
printf("%lld %lld\n",ans.b,ans.a);
}
return 0;
}
●杜教筛入门(BZOJ 3944 Sum)的更多相关文章
- bzoj 3944 Sum —— 杜教筛
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3944 杜教筛入门题! 看博客:https://www.cnblogs.com/zjp-sha ...
- luogu 3768 简单的数学题 (莫比乌斯反演+杜教筛)
题目大意:略 洛谷传送门 杜教筛入门题? 以下都是常规套路的变形,不再过多解释 $\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{N}ijgcd(i,j)$ $\sum ...
- bzoj 3944: Sum(杜教筛)
3944: Sum Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4930 Solved: 1313[Submit][Status][Discuss ...
- bzoj 3944: Sum【莫比乌斯函数+欧拉函数+杜教筛】
一道杜教筛的板子题. 两个都是积性函数,所以做法是一样的.以mu为例,设\( f(n)=\sum_{d|n}\mu(d) g(n)=\sum_{i=1}^{n}f(i) s(n)=\sum_{i=1} ...
- 3944: Sum[杜教筛]
3944: Sum Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3471 Solved: 946[Submit][Status][Discuss] ...
- bzoj 3944 杜教筛
题目中要求phi和miu的前缀和,利用杜教筛可以推出公式.我们令为 那么有公式 类比欧拉函数,我们可以推出莫比乌斯函数的和公式为 (公式证明懒得写了,主要核心是利用Dirichlet卷积的性质 ph ...
- BZOJ 4805: 欧拉函数求和 杜教筛
https://www.lydsy.com/JudgeOnline/problem.php?id=4805 给出一个数字N,求sigma(phi(i)),1<=i<=N https://b ...
- BZOJ3944: Sum(杜教筛模板)
BZOJ3944: Sum(杜教筛模板) 题面描述 传送门 题目分析 求\(\sum_{i=1}^{n}\mu(i)\)和\(\sum_{i=1}^{n}\varphi(i)\) 数据范围线性不可做. ...
- [BZOJ3944]Sum(杜教筛)
3944: Sum Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 6201 Solved: 1606[Submit][Status][Discuss ...
随机推荐
- Django 模版语法
一.简介 模版是纯文本文件.它可以产生任何基于文本的的格式(HTML,XML,CSV等等). 模版包括在使用时会被值替换掉的 变量,和控制模版逻辑的 标签. {% extends "base ...
- 基于协程的Python网络库gevent
import gevent def test1(): print 12 gevent.sleep(0) print 34 def test2(): print 56 gevent.sleep(0) p ...
- git cherry-pick 整理
git cherry-pick可以选择某一个分支中的一个或几个commit(s)来进行操作.例如,假设我们有个稳定版本的分支,叫v2.0,另外还有个开发版本的分支v3.0,我们不能直接把两个分支合并, ...
- intellij idea 找不到或无法加载主类
解决intellij idea 找不到或无法加载主类,请看以下图文介绍 然后idea会重启,等idea启动后 右侧的maven clean 一下,然后再compile就解决了
- python django的ManyToMany简述
Django的多对多关系 在Django的关系中,有一对一,一对多,多对多的关系 我们这里谈的是多对多的关系 ==我们首先来设计一个用于示例的表结构== # -*- coding: utf-8 -*- ...
- Tomcat性能优化及JVM内存工作原理
Java性能优化原则:代码运算性能.内存回收.应用配置(影响Java程序主要原因是垃圾回收,下面会重点介绍这方面) 代码层优化:避免过多循环嵌套.调用和复杂逻辑. Tomcat调优主要内容如下: 1. ...
- Docker学习笔记 - Docker的基本概念
一.cs架构 Docker客户端:本地或远程 Docker服务端:守护进程Docker Daemon 二.基本概念 Docker镜像:打包阶段,层叠的只读文件系统,引导->root(ubuntu ...
- Jetty入门(1-2)eclipse集成jetty插件并发布运行应用
一.eclipse集成jetty插件 1.从市场安装jetty插件 2.使用jetty插件发布应用和配置运行环境 debug配置默认共用上述run配置 3.使用jetty插件启动运行和停止运行选中的应 ...
- Spring Security入门(3-9)Spring Security登录成功以后
- maven入门(8)maven的依赖管理
我们项目中用到的jar包可以通过依赖的方式引入,构建项目的时候从Maven仓库下载即可. 1. 依赖配置 依赖可以声明如下: <project> ... <dependenci ...