题目描述

给你一棵 n 个点的无根树。

树上的每条边具有颜色。一共有 m 种颜色,编号为 1 到 m。第 i 种颜色的权值为 ci。

对于一条树上的简单路径,路径上经过的所有边按顺序组成一个颜色序列,序列可以划

分成若干个相同颜色段。定义路径权值为颜色序列上每个同颜色段的颜色权值之和。

请你计算,经过边数在 l 到 r 之间的所有简单路径中,路径权值的最大值。

题解

如果没有颜色这种东西的话,看到l~r的限制,就容易想到点分治+单调队列维护。

我们的单调队列的作用其实就是合并两颗子树。

考虑有如果我们准备合并的那两颗子树的第一条边颜色相同,那么答案应当再去减去一个边权。

所以我们得对于每种颜色分别维护。

但是我们还需要保证合并的复杂度。

这时候我们考虑对于颜色相同的子树,我们把它们放在一起按照最大深度从小到大处理,这样能够保证它的复杂度是线性的。

但是多个颜色怎么处理。

观察到我们合并两个不同的颜色可以看做是两个桶在合并,所以对于颜色我们按照这个颜色的最大深度排个序就好了。

代码

我要再把while写成if就去cs。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#define N 200002
using namespace std;
int head[N],tot,h,t,q[N],dp[N],size[N],root,sum,deep[N],maxdeep,su[N];
int maxl,minl,que[N],colmaxdeep[N],n,m,cal[N],ans,c[N];
bool vis[N],visit[N];
inline int rd(){
int x=;char c=getchar();bool f=;
while(!isdigit(c)){if(c=='-')f=;c=getchar();}
while(isdigit(c)){x=(x<<)+(x<<)+(c^);c=getchar();}
return f?-x:x;
}
struct edge{int n,to,l;}e[N<<];
struct node{
int id,col,dep;
inline bool operator <(const node &b)const{
if(col!=b.col){
// if(su[col]!=su[b.col])return su[col]<su[b.col];
if(colmaxdeep[col]!=colmaxdeep[b.col])return colmaxdeep[col]<colmaxdeep[b.col];
else return col<b.col;
}
else return dep<b.dep;
}
}b[N];
int tong[N],_tong[N];
inline void add(int u,int v,int l){
e[++tot].n=head[u];e[tot].to=v;head[u]=tot;e[tot].l=l;
}
void getroot(int u,int fa){
dp[u]=;size[u]=;
for(int i=head[u];i;i=e[i].n)if(e[i].to!=fa&&!vis[e[i].to]){
int v=e[i].to;
getroot(v,u);
size[u]+=size[v];
dp[u]=max(dp[u],size[v]);
}
dp[u]=max(dp[u],sum-size[u]);
if(dp[u]<dp[root])root=u;
}
void getsize(int u,int fa){
size[u]=;
for(int i=head[u];i;i=e[i].n)if(e[i].to!=fa&&!vis[e[i].to]){
int v=e[i].to;
getsize(v,u);
size[u]+=size[v];
}
}
void getdeep(int u,int fa,int val,int lastcol){
cal[u]=val;maxdeep=max(maxdeep,deep[u]);
for(int i=head[u];i;i=e[i].n)if(e[i].to!=fa&&!vis[e[i].to]){
int v=e[i].to;deep[v]=deep[u]+;
getdeep(v,u,e[i].l==lastcol?val:val+c[e[i].l],e[i].l);
}
}
void getcalc(int u,int fa){
tong[deep[u]]=max(tong[deep[u]],cal[u]);
for(int i=head[u];i;i=e[i].n)if(e[i].to!=fa&&!vis[e[i].to]){
int v=e[i].to;deep[v]=deep[u]+;
getcalc(v,u);
}
}
inline void _ins(int x){
while(h<=t&&_tong[q[t]]<=_tong[x])t--;
q[++t]=x;
}
inline void ins(int x){
while(h<=t&&tong[q[t]]<=tong[x])t--;
q[++t]=x;
}
inline void calc(int u){
int clsum=;vis[u]=;
for(int i=head[u];i;i=e[i].n)if(!vis[e[i].to]){
int v=e[i].to;maxdeep=;
deep[v]=;getdeep(v,u,c[e[i].l],e[i].l);
b[++clsum]=node{v,e[i].l,maxdeep};
colmaxdeep[e[i].l]=maxdeep;su[e[i].l]++;
}
int nowmaxdeep=,summaxdeep=;
sort(b+,b+clsum+);
for(int o=;o<=clsum+;++o){
int v=b[o].id;
if(b[o].col!=b[o-].col){
summaxdeep=max(summaxdeep,nowmaxdeep);
h=t=;q[h]=;int p=;
for(int i=nowmaxdeep;i>=;--i){
while(p+i<maxl&&p<summaxdeep){p++;_ins(p);}
while(h<=t&&q[h]+i<minl)h++;if(h<=t)ans=max(ans,tong[i]+_tong[q[h]]);
}
for(int j=;j<=nowmaxdeep;++j)_tong[j]=max(_tong[j],tong[j]),tong[j]=-1e9;
nowmaxdeep=;
}
if(o>clsum)break;
q[h=t=]=v;visit[v]=;que[]=;
while(h<=t){
int u=q[h++];
que[++que[]]=u;
for(int i=head[u];i;i=e[i].n){
int v=e[i].to;
if(!vis[v]&&!visit[v])q[++t]=v,visit[v]=;
}
}
h=;t=;int p=;
for(int i=que[];i>=;--i){
int x=que[i];visit[x]=;
while(p+deep[x]<maxl&&p<nowmaxdeep){p++;ins(p);}
while(h<=t&&q[h]+deep[x]<minl)h++;
if(h<=t)ans=max(ans,cal[x]+tong[q[h]]-c[b[o].col]);
}
getcalc(v,u);
nowmaxdeep=max(nowmaxdeep,b[o].dep);
}
for(int i=head[u];i;i=e[i].n)if(!vis[e[i].to])colmaxdeep[e[i].l]=,su[e[i].l]=;
// cout<<summaxdeep<<endl;
for(int i=;i<=summaxdeep;++i)tong[i]=_tong[i]=-1e9;
}
void solve(int u){
calc(u);
for(int i=head[u];i;i=e[i].n)if(!vis[e[i].to]){
int v=e[i].to;
root=n+;sum=size[v];
getroot(v,u);getsize(root,);
solve(root);
}
}
int main(){
n=rd();m=rd();minl=rd();maxl=rd();
for(int i=;i<=n;++i)tong[i]=_tong[i]=-1e9;
ans=-1e9;
for(int i=;i<=m;++i)c[i]=rd();
int u,v,w;
for(int i=;i<n;++i){
u=rd();v=rd();w=rd();
add(u,v,w);add(v,u,w);
}
sum=n;root=n+;dp[root]=n+;
getroot(,);getsize(root,);
solve(root);
printf("%d\n",ans);
return ;
}

[BJOI2017]树的难题的更多相关文章

  1. [BJOI2017]树的难题 点分治 线段树

    题面 [BJOI2017]树的难题 题解 考虑点分治. 对于每个点,将所有边按照颜色排序. 那么只需要考虑如何合并2条链. 有2种情况. 合并路径的接口处2条路径颜色不同 合并路径的接口处2条路径颜色 ...

  2. [BJOI2017]树的难题 点分治,线段树合并

    [BJOI2017]树的难题 LG传送门 点分治+线段树合并. 我不会写单调队列,所以就写了好写的线段树. 考虑对于每一个分治中心,把出边按颜色排序,这样就能把颜色相同的子树放在一起处理.用一棵动态开 ...

  3. BZOJ4860 BJOI2017 树的难题 点分治、线段树合并

    传送门 只会线段树……关于单调队列的解法可以去看“重建计划”一题. 看到路径长度$\in [L,R]$考虑点分治.可以知道,在当前分治中心向其他点的路径中,始边(也就是分治中心到对应子树的根的那一条边 ...

  4. 并不对劲的loj2179:p3714:[BJOI2017]树的难题

    题目大意 有一棵树,\(n\)(\(n\leq2*10^5\))个点,每条边\(i\)有颜色\(w_i\),共有\(m\)(\(m\leq n\))种颜色,第\(i\)种颜色的权值是\(c_i\)(\ ...

  5. P3714 [BJOI2017]树的难题 点分治+线段树合并

    题目描述 题目传送门 分析 路径问题考虑点分治 对于一个分治中心,我们可以很容易地得到从它开始的一条路径的价值和长度 问题就是如何将不同的路径合并 很显然,对于同一个子树中的所有路径,它们起始的颜色是 ...

  6. 洛谷 P3714 - [BJOI2017]树的难题(点分治)

    洛谷题面传送门 咦?鸽子 tzc 竟然来补题解了?incredible( 首先看到这样类似于路径统计的问题我们可以非常自然地想到点分治.每次我们找出每个连通块的重心 \(x\) 然后以 \(x\) 为 ...

  7. luoguP3714 [BJOI2017]树的难题 点分治

    以后传数组绝对用指针... 考虑点分治 在点分的时候,把相同的颜色的在一起合并 之后,把不同颜色依次合并 我们可以用单调队列做到单次合并$O(n + m)$ 如果我们按照深度大小来合并,那么由于每次都 ...

  8. BZOJ3257 : 树的难题

    设$f[x][i][j]$表示以$x$为根的子树,与$x$连通部分有$i$个黑点,$j$个白点,不联通部分都是均衡的最小代价.若$i>1$,则视作$1$:若$j>2$,则视作$2$. 然后 ...

  9. 【XSY2307】树的难题

    Description Solution 看到这种路径统计问题,一般就想到要用点分治去做. 对于每个重心\(u\),统计经过\(u\)的合法的路径之中的最大值. 第一类路径是从\(u\)出发的,直接逐 ...

随机推荐

  1. .net 笔试面试总结(2)

    在.net 中类(class) 与结构(Struct)的异同. Class 可以被实例化,属于引用类型,是分配在内存的堆上的.类是引用传递的. Struct 属于值类型,是分配在内存的栈上的.结构体是 ...

  2. PPT在HTML网页上播放方法

    项目中遇到一个需求:要求PPT在HTML网页上播放,而且要像电脑一样播放PPT,大家能想到的是什么方法? 印象中我好像有在网上见到过PPT模板网站上的PPT可以播放,赶紧百度搜了下发现都是用第三方软件 ...

  3. android 记一次解决键盘遮挡问题

    文章链接:https://mp.weixin.qq.com/s/1gkMtLu0BTXOUOj6isDjUw 日常android开发过程中,会遇到编辑框输入内容弹出软键盘,往往会出现键盘遮挡内容,或者 ...

  4. webpack4介绍

    https://github.com/wallstreetcn/webpack-and-spa-guide

  5. JQuery 图片轮播,详细注释说明,让你一看就会!

    准备工作: 1.准备几张大小相同的图片 完成功能: 1.自动轮播 2.手动轮播 3.点击二侧按钮前后切换图片 JQuery插件地址: 链接:https://pan.baidu.com/s/1zNl2- ...

  6. Dell服务器U盘安装Windows Server时识别不到硬盘

    Dell服务器U盘安装Windows Server时识别不到硬盘 1.下载驱动http://downloads.dell.com/FOLDER03688531M/1/SAS-RAID_Driver_T ...

  7. js坚持不懈之13:JavaScript查找HTML元素的方法

    1. 通过 id 查找 HTML 元素 <!DOCTYPE html> <html> <body> <p id = "intro"> ...

  8. Centos7 安装mysql-8.0.13(rpm)

    yum or rpm? yum安装方式很方便,但是下载mysql的时候从官网下载,速度较慢. rpm安装方式可以从国内镜像下载mysql的rpm包,比较快.rpm也适合离线安装. 环境说明 操作系统: ...

  9. wireshark抓包,安装及简单使用

    跟着实验室师兄尝试做流量分析,趁着离期末考试还有几天,尽快把环境搭好. 采集:自动化测试monkeyrunner,ok 抓包 charles/Wireshark,ok 限制其他应用运行App Moun ...

  10. Python-语法模板大全(常用)

    目录 1.怎么存数据 变量: 字符串: 不可变对象 列表: 元组: 字典: 三大容器的遍历方法 2.怎么用数据 数字操作符: 判断循环: 3.函数 4. Python核心编程 4.1. 列表生成器 5 ...