Time Limit: 10 Sec Memory Limit: 512 MB

Description

​ 有一张\(n×m\)的数表,其第i行第j列(\(,1 \le i \leq n,1 \le j \le m\))的数值为
能同时整除\(i\)和\(j\)的所有自然数之和。给定\(a\),计算数表中不大于\(a\)的数之和。

Input

​ 输入包含多组数据。
​ 输入的第一行一个整数\(Q\)表示测试点内的数据组数,接下来Q行,每行三个整数\(,,n,m,a\)(\(|a| < =10^9\))描述一组数据。

Output

​ 对每组数据,输出一行一个整数,表示答案模\(2^{31}\)的值。

Sample Input

​ 2
​ 4 4 3
​ 10 10 5

Sample Output

​ 20
​ 148

HINT

​ \(1 \le n,m \le 10^5 \\ 1 \le Q \le 2×10^4\)

Solution

​ 先忽略\(a\)的条件。

​ 令\(f(n)\)表示\(n\)的所有约数之和, \(sum(x)\)表示\(且x=gcd(i,j),1\le i \le n且1\le j \le m\)的数对数量.

​ 按照之前的反演,\(sum(x)=\sum\limits_{x|d}\mu(\frac dx)\lfloor\frac nd\rfloor\lfloor\frac md\rfloor=\sum\)
\[
\begin{aligned}
ans&=\sum_{i=1}^n\sum_{j=1}^m\sum_{d|i且d|j}d\\
&=\sum_{i=1}^n\sum_{j=1}^mf(gcd(i,j))\\
&=\sum_{d=1}^{min(n,m)}f(d)sum(d)\\
&=\sum_{d=1}^{min(n,m)}f(d)\sum_{x|d}\mu(\frac dx)\lfloor\frac nd\rfloor\lfloor\frac md\rfloor\\
&=\sum_{d=1}^{min(n,m)}f(d)\sum_{k=1}^{\lfloor min(n,m)/d\rfloor}\mu(\frac {kx}x)\lfloor\frac n{kx}\rfloor\lfloor\frac m{kx}\rfloor\\
&=\sum_{T=1}^{min(n,m)}\lfloor\frac nT\rfloor\lfloor\frac mT\rfloor\sum_{d|T}f(d)\mu(\frac Td)\\
&=\sum_{T=1}^{min(n,m)}\lfloor\frac nT\rfloor\lfloor\frac mT\rfloor g(T) &令g(x)=\sum_{d|x}f(d)\mu(\frac xd)
\end{aligned}
\]

​ 其实\(g(x)\)是可以暴力求解的...因为\(x\)的因数个数不是很多。但是我们不能直接算完,因为有\(a\)的限制。由此要引入树状数组。

​ 回头看\(a\)的条件,从第三行等式来看,只有\(d\leq a\)的\(f(d)\)才能有贡献。

​ 我们用一个树状数组来维护\(g(x)\)的前缀和,那么对于询问,按照\(a\)排序,将所有\(x\le a\)的\(f(x)\),枚举\(x|y\)的\(y\),更新\(g(y)+=f(x)\mu(\frac yx)\)。

​ 这样按照分块的套路求解\(ans\)即可.

f函数求解

​ \(f(x)=\sum\limits_{d|x}d\)

​ \(f(x)\)是积性函数,可以用线性筛求解:

​ (1) \(x\)是质数时,\(f(x)=1+x\)

​ (2)循环\(i\)与\(p\)筛到\(x\), \(x\)=\(p*i\).

​ 若\(i\nmid p\),则\(i\)与\(p\)互质,那么\(f(x)=f(i)f(p)=f(i)*(p+1)\).

​ 若\(i|p\),记\(i\)去除所有\(p\)因子后的数为\(a\). 则\(f(x)=f(i)*p+f(a)\).

​ 记\(i=p_1^{q_1}p_2^{q_2}...p_k^{q_k}\),则\(x=p_1^{q_1}p_2^{q_2}...p_{loc}^{q_{loc}+1}...p_k^{q_k}\),\(a=p_1^{q_1}..p_{loc-1}^{q_{loc-1}}p_{loc+1}^{q_{loc}+1}...p_k^{q_k}\).不严谨地,这里\(p_{loc}\)和\(q_{loc}\)分别代表的是\(p\),与\(p\)在质因数分解中的指数。
\[
\begin{aligned}
f(i)*p&=(1+p1+...+p1^{q1})...(1+p_{loc}+...+p_{loc}^{q_{loc}})...(1+p_k+...+p_k^{q_k})*p\\
&=(p_{loc}+p_{loc}^2+..+p_{loc}^{q_{loc}+1})f(a)\\
\therefore f(i)*p&+f(a)=(1+p_{loc}+p_{loc}^2+...+p_{loc}^{q_{loc}+1})f(a)=f(x)
\end{aligned}
\]

【BZOJ3529】【SDOI2014】 数表的更多相关文章

  1. [bzoj3529][Sdoi2014]数表_树状数组_莫比乌斯反演

    数表 bzoj-3529 Sdoi-2014 题目大意:n*m的数表,第i行第j列的数是同时整除i和j的所有自然数之和.给定a,求数表中所有不超过a的和. 注释:$1\le n,m \le 10^5$ ...

  2. BZOJ3529 [Sdoi2014]数表 【莫比乌斯反演】

    3529: [Sdoi2014]数表 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2151 Solved: 1080 [Submit][Status ...

  3. bzoj千题计划205:bzoj3529: [Sdoi2014]数表

    http://www.lydsy.com/JudgeOnline/problem.php?id=3529 有一张n*m的数表,其第i行第j列(1 < =i < =n,1 < =j & ...

  4. BZOJ3529 [Sdoi2014]数表【莫比乌斯反演】

    Description 有一张 n×m 的数表,其第 i 行第 j 列(1 <= i <= n, 1 <= j <= m)的数值为 能同时整除 i 和 j 的所有自然数之和.给 ...

  5. 莫比乌斯反演套路二--(n/d)(m/d)给提出来--BZOJ3529: [Sdoi2014]数表

    一个数表上第i行第j列表示能同时整除i和j的自然数,Q<=2e4个询问,每次问表上1<=x<=n,1<=y<=m区域内所有<=a的数之和.n,m<=1e5,a ...

  6. BZOJ3529: [Sdoi2014]数表(莫比乌斯反演,离线)

    Description 有一张 n×m 的数表,其第 i 行第 j 列(1 <= i <= n, 1 <= j <= m)的数值为 能同时整除 i 和 j 的所有自然数之和.给 ...

  7. BZOJ3529: [Sdoi2014]数表

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3529 挺恶心的数论TAT... 设f[i]是i的约数和,这个可以nln(n)扫出来. ans= ...

  8. bzoj3529: [Sdoi2014]数表 莫比乌斯反演

    题意:求\(\sum_{i=1}^n\sum_{j=1}^nf(gcd(i,j))(gcd(i,j)<=a),f(x)是x的因子和函数\) 先考虑没有限制的情况,考虑枚举gcd为x,那么有\(\ ...

  9. BZOJ3529: [Sdoi2014]数表(莫比乌斯反演 树状数组)

    题意 题目链接 Sol 首先不考虑\(a\)的限制 我们要求的是 \[\sum_{i = 1}^n \sum_{j = 1}^m \sigma(gcd(i, j))\] 用常规的套路可以化到这个形式 ...

  10. 题解【bzoj3529 [SDOI2014]数表】

    Description \(T\) 组询问,定义 \(F(n)=\sum\limits_{d|n}d\).每次给出 \(n,m,a\) 求 \[\sum\limits_{i=1,j=1,F(\gcd( ...

随机推荐

  1. Universe Design Tool Using JDBC connect Sybase/Oracle Get Error

    一.针对Sybase 1 使用SAP Universe 设计工具连接Sybase数据库报错,报错如下: “CS: Java Class not found in classpath : com.syb ...

  2. 流API--原始类型流

    到目前为止,我们已经将整型收集到了一个Stream<Integer>的流中,不过将每个整数包装成相应对象显然是一个低效的做法,对于其他的基本类型也是一样,我们前面说过jdk提供包装类已经自 ...

  3. Navicat查询结果不能修改的原因

    问题: 开发中常使用Navicat查询数据库,并修改数据库中的值.今天发现查询结果为只读,不能修改.一般连表查不能修改我是知道的,但是单表查居然不能修改. 解决方法: 查了下,有说表是只读,也有说是权 ...

  4. word中正文分栏重新换页问题

    小论文常需要正文分栏,但是标题.摘要不分栏的编排格式. 1.在摘要后面加入分隔符来将内容分为摘要和正文两个部分.选择 插入→分隔符→分节符(连续). 2.然后进行分栏.选择 格式→分栏. 3.此时如果 ...

  5. 添加FTP用户(vsftpd)

    1.环境:ftp为vsftp. 用户名为test.默认路径为/home/test 2.新建用户(当前是root用户) 运行命令:"useradd -d /home/test test&quo ...

  6. 01-Go命令与基础

    什么是Go? Go是一门并发支持.垃圾回收的编译型系统编程语言,旨在创造一门具有在静态编译语言的高性能和动态的高效开之间拥有良好平衡点的一门编程语言. Go的主要特点有哪些? 类型安全和内存安全 以非 ...

  7. 解决苹果电脑(mac)管理员账户变成了普通用户后不能解锁用户与群组的问题

    亲们,我先说说前因,然后再说一下解决方法. 前因 今天不知怎么就想把苹果电脑原来的名字给改一下,于是就做了下面的操作(你们不要这样做) 1.系统偏好设置→用户与组群→当前管理员用户→(右键)高级选项 ...

  8. javascript 中 dom.getAttribute("value") 与dom.value的差异

    dom 是一个 input type="text" 手动修改 input 的值, 使用 dom.getAttribute("value") 只能得到 html ...

  9. 安装redis 2.6.4

    下载redis-2.6.4下载链接:http://pan.baidu.com/s/1eQ9Z8NS make MALLOC=jemalloc/server/redis2/src/redis-serve ...

  10. java中Queue简介

    Queue: 基本上,一个队列就是一个先入先出(FIFO)的数据结构 offer,add区别:一些队列有大小限制,因此如果想在一个满的队列中加入一个新项,多出的项就会被拒绝.这时新的 offer 方法 ...