BZOJ 1937: [Shoi2004]Mst 最小生成树 [二分图最大权匹配]
题意:
给一张无向图和一棵生成树,改变一些边的权值使生成树为最小生成树,代价为改变权值和的绝对值,求最小代价
线性规划的形式:
$Min\quad \sum\limits_{i=1}^{m} \delta_i$
$Sat\quad $非树边边权$\ge$生成树上路径任何一条边的边权
$i$非树边$j$树边
$w_i+\delta_i \ge w_j-\delta_j$
然后可以转化成二分图最小顶标和来求解
这里需要求二分图最大权非完美匹配,我的做法是遇到$d[t] < 0$就退出,反正这道题过了
然后很高兴的$1A$了就去看金刚狼3了好感动 现在补题解...
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=,M=2e5+,INF=1e9;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} int n,m,s,t,g[][],u,v,id[][],num;
struct data{int u,v,w;}a[M]; int q[N],p;
struct Graph{
struct edge{int v,ne;}e[M];
int cnt,h[N];
inline void ins(int u,int v){
cnt++;
e[cnt].v=v;e[cnt].ne=h[u];h[u]=cnt;
cnt++;
e[cnt].v=u;e[cnt].ne=h[v];h[v]=cnt;
}
bool dfs(int u,int fa,int tar){
if(u==tar) return true;
for(int i=h[u];i;i=e[i].ne)
if(e[i].v!=fa){
q[++p]=id[u][e[i].v];
if(dfs(e[i].v,u,tar)) return true;
p--;
}
return false;
}
}G; struct Edge{
int v,ne,w,c,f;
Edge(){}
Edge(int v,int w,int c,int f):v(v),w(w),c(c),f(f){}
}e[M];
int cnt,h[N];
inline void ins(int u,int v,int w,int c){//printf("ins %d %d %d %d\n",u,v,w,c);
cnt++;
e[cnt]=Edge(v,w,c,);e[cnt].ne=h[u];h[u]=cnt;
cnt++;
e[cnt]=Edge(u,-w,,);e[cnt].ne=h[v];h[v]=cnt;
} void build(){
s=;t=m+;
for(int i=;i<n;i++) ins(s,i,,);
for(int i=n;i<=m;i++) ins(i,t,,);
for(int i=n;i<=m;i++){
p=;
G.dfs(a[i].u,,a[i].v);
//printf("now %d\n",i);
//for(int j=1;j<=p;j++) printf("%d ",q[j]);puts("");
for(int j=;j<=p;j++) ins(q[j],i,a[q[j]].w-a[i].w,);
}
} int d[N],head,tail,inq[N],pre[N],pos[N];
inline void lop(int &x){if(x==N)x=;}
bool spfa(){
//memset(d,127,sizeof(d));
for(int i=s;i<=t;i++) d[i]=-INF,inq[i]=;
//memset(inq,0,sizeof(inq));
head=tail=;
d[s]=;inq[s]=;q[tail++]=s;
pre[t]=-;
while(head!=tail){
int u=q[head++];inq[u]=;lop(head);
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v,w=e[i].w;
if(d[v]<d[u]+w&&e[i].c>e[i].f){
d[v]=d[u]+w;
pre[v]=u;pos[v]=i;
if(!inq[v])q[tail++]=v,inq[v]=,lop(tail);
}
}
}
return pre[t]!=-;
}
int mcmf(){
int flow=,cost=;
while(spfa()){
int f=INF;
for(int i=t;i!=s;i=pre[i]) f=min(f,e[pos[i]].c-e[pos[i]].f);
flow+=f;
if(d[t]<) break;
cost+=d[t]*f;//printf("%d %d %d\n",f,d[t],cost);
for(int i=t;i!=s;i=pre[i]){
e[pos[i]].f+=f;
e[((pos[i]-)^)+].f-=f;
}
}
return cost;
} int main(){
freopen("in","r",stdin);
n=read();m=read();
for(int i=;i<=m;i++)
u=read(),v=read(),g[u][v]=g[v][u]=read();
for(int i=;i<n;i++)
u=read(),v=read(),id[u][v]=id[v][u]=++num,a[num]=(data){u,v,g[u][v]},G.ins(u,v);
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
if(g[i][j]&&!id[i][j]) id[i][j]=id[j][i]=++num,a[num]=(data){i,j,g[i][j]};
//printf("lo %d %d %d\n",i,j,num); build();
printf("%d\n",mcmf());
}
BZOJ 1937: [Shoi2004]Mst 最小生成树 [二分图最大权匹配]的更多相关文章
- [BZOJ 1937][Shoi2004]Mst 最小生成树
传送门 $ \color{red} {solution:} $ 对于每条树边\(i\),其边权只可能变小,对于非树边\(j\),其边权只可能变大,所以对于任意非树边覆盖的树边有 \(wi - di & ...
- [BZOJ1937][SHOI2004]Mst最小生成树(KM算法,最大费用流)
1937: [Shoi2004]Mst 最小生成树 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 802 Solved: 344[Submit][Sta ...
- 【BZOJ1937】[Shoi2004]Mst 最小生成树 KM算法(线性规划)
[BZOJ1937][Shoi2004]Mst 最小生成树 Description Input 第一行为N.M,其中 表示顶点的数目, 表示边的数目.顶点的编号为1.2.3.…….N-1.N.接下来的 ...
- POJ2195 Going Home[费用流|二分图最大权匹配]
Going Home Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 22088 Accepted: 11155 Desc ...
- Hdu2255 奔小康赚大钱(二分图最大权匹配KM算法)
奔小康赚大钱 Problem Description 传说在遥远的地方有一个非常富裕的村落,有一天,村长决定进行制度改革:重新分配房子. 这可是一件大事,关系到人民的住房问题啊.村里共有n间房间,刚好 ...
- [ACM] HDU 2255 奔小康赚大钱 (二分图最大权匹配,KM算法)
奔小康赚大钱 Problem Description 传说在遥远的地方有一个很富裕的村落,有一天,村长决定进行制度改革:又一次分配房子. 这但是一件大事,关系到人民的住房问题啊. 村里共同拥有n间房间 ...
- POJ2195 Going Home (最小费最大流||二分图最大权匹配) 2017-02-12 12:14 131人阅读 评论(0) 收藏
Going Home Description On a grid map there are n little men and n houses. In each unit time, every l ...
- HDU2255 奔小康赚大钱 —— 二分图最大权匹配 KM算法
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2255 奔小康赚大钱 Time Limit: 1000/1000 MS (Java/Others) ...
- 二分图最大权匹配——KM算法
前言 这东西虽然我早就学过了,但是最近才发现我以前学的是假的,心中感慨万千(雾),故作此篇. 简介 带权二分图:每条边都有权值的二分图 最大权匹配:使所选边权和最大的匹配 KM算法,全称Kuhn-Mu ...
随机推荐
- PL/SQL 一个数据对象一个事务(rollback,submit)
/*********************************************** 一个数据对象一个事务(且记录错误信息到处理对象) ************************** ...
- Linux使用Public Key方式远程登录
一.前言: ssh远程登录密码认证的方式有三种,password.Keyboard Interactive.Public Key 前面两种方式就是密码认证,含义都是一样大同小异.第三种是登录方式最安全 ...
- oracle创建触发器及作用举例
--创建触发器及作用举例 create or replace trigger tri before delete on emp --在删除emp表数据之前需要做的事根据自己的业务去写,before是在 ...
- centos 6.4 mysql rpm 离线安装【备忘】
离线状态下使用rpm的安装包进行mysql的安装,仅作备忘 准备工作: 官网下载mysql离线rpm安装包(这里就不演示了,拿现成的做演示) =================更新线 2018-01- ...
- don\'t have permission access on this server听语音
在网络上已经有很多的类型较多的框架,例如wamp,xmap等基于apache+mysql集成的框架,只要通过架包的方式,把相关的内容放到与这些的框架中后,启动服务器就可以执行架包内容,而在初始安装完成 ...
- 织梦dedecmsV5.7联动类型无法显示的处理方法
最近织梦dedecms在新的功能中添加了一个联动类型这样的一个功能.所谓的联动类型,类似于一级目录下有二级目录,二级目录下又有三级目录,可以理解为数据结构中树形结构.级和级之间都是有着联系的.为了让大 ...
- JAR包介绍大全用途作用详解JAVA
jta.jar 标准JTA API必要commons-collections.jar 集合类 必要antlr.jar ANother Tool for Language Recognition 必要 ...
- Thrift之TProtocol系列TBinaryProtocol解析
首先看一下Thrift的整体架构,如下图: 如图所示,黄色部分是用户实现的业务逻辑,褐色部分是根据thrift定义的服务接口描述文件生成的客户端和服务器端代码框架(前篇2中已分析了thrift ser ...
- Jpa 本地方式实现数据的持久化【千锋】
Jpa本身支持多种方式的对象持久化,比如数据库方式,还有一种方式就是本地文件的方式,本文来讲解以本地方式实现的数据持久化,具体的资源大家可以参阅一下网站:http://www.objectdb.com ...
- python基础8之自定义模块、if __name__==__main__:解释
一.自定义模块与使用 python模块说明:类似于函数式编程和面向过程编程,函数式编程则完成一个功能,其他代码用来调用即可,提供了代码的重用性和代码间的耦合.而对于一个复杂的功能来,可能需要多个函数才 ...