传送门

题意:

给一张无向图和一棵生成树,改变一些边的权值使生成树为最小生成树,代价为改变权值和的绝对值,求最小代价


线性规划的形式:

$Min\quad \sum\limits_{i=1}^{m} \delta_i$

$Sat\quad $非树边边权$\ge$生成树上路径任何一条边的边权

$i$非树边$j$树边

$w_i+\delta_i \ge w_j-\delta_j$

然后可以转化成二分图最小顶标和来求解

这里需要求二分图最大权非完美匹配,我的做法是遇到$d[t] < 0$就退出,反正这道题过了

然后很高兴的$1A$了就去看金刚狼3了好感动 现在补题解...

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=,M=2e5+,INF=1e9;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} int n,m,s,t,g[][],u,v,id[][],num;
struct data{int u,v,w;}a[M]; int q[N],p;
struct Graph{
struct edge{int v,ne;}e[M];
int cnt,h[N];
inline void ins(int u,int v){
cnt++;
e[cnt].v=v;e[cnt].ne=h[u];h[u]=cnt;
cnt++;
e[cnt].v=u;e[cnt].ne=h[v];h[v]=cnt;
}
bool dfs(int u,int fa,int tar){
if(u==tar) return true;
for(int i=h[u];i;i=e[i].ne)
if(e[i].v!=fa){
q[++p]=id[u][e[i].v];
if(dfs(e[i].v,u,tar)) return true;
p--;
}
return false;
}
}G; struct Edge{
int v,ne,w,c,f;
Edge(){}
Edge(int v,int w,int c,int f):v(v),w(w),c(c),f(f){}
}e[M];
int cnt,h[N];
inline void ins(int u,int v,int w,int c){//printf("ins %d %d %d %d\n",u,v,w,c);
cnt++;
e[cnt]=Edge(v,w,c,);e[cnt].ne=h[u];h[u]=cnt;
cnt++;
e[cnt]=Edge(u,-w,,);e[cnt].ne=h[v];h[v]=cnt;
} void build(){
s=;t=m+;
for(int i=;i<n;i++) ins(s,i,,);
for(int i=n;i<=m;i++) ins(i,t,,);
for(int i=n;i<=m;i++){
p=;
G.dfs(a[i].u,,a[i].v);
//printf("now %d\n",i);
//for(int j=1;j<=p;j++) printf("%d ",q[j]);puts("");
for(int j=;j<=p;j++) ins(q[j],i,a[q[j]].w-a[i].w,);
}
} int d[N],head,tail,inq[N],pre[N],pos[N];
inline void lop(int &x){if(x==N)x=;}
bool spfa(){
//memset(d,127,sizeof(d));
for(int i=s;i<=t;i++) d[i]=-INF,inq[i]=;
//memset(inq,0,sizeof(inq));
head=tail=;
d[s]=;inq[s]=;q[tail++]=s;
pre[t]=-;
while(head!=tail){
int u=q[head++];inq[u]=;lop(head);
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v,w=e[i].w;
if(d[v]<d[u]+w&&e[i].c>e[i].f){
d[v]=d[u]+w;
pre[v]=u;pos[v]=i;
if(!inq[v])q[tail++]=v,inq[v]=,lop(tail);
}
}
}
return pre[t]!=-;
}
int mcmf(){
int flow=,cost=;
while(spfa()){
int f=INF;
for(int i=t;i!=s;i=pre[i]) f=min(f,e[pos[i]].c-e[pos[i]].f);
flow+=f;
if(d[t]<) break;
cost+=d[t]*f;//printf("%d %d %d\n",f,d[t],cost);
for(int i=t;i!=s;i=pre[i]){
e[pos[i]].f+=f;
e[((pos[i]-)^)+].f-=f;
}
}
return cost;
} int main(){
freopen("in","r",stdin);
n=read();m=read();
for(int i=;i<=m;i++)
u=read(),v=read(),g[u][v]=g[v][u]=read();
for(int i=;i<n;i++)
u=read(),v=read(),id[u][v]=id[v][u]=++num,a[num]=(data){u,v,g[u][v]},G.ins(u,v);
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
if(g[i][j]&&!id[i][j]) id[i][j]=id[j][i]=++num,a[num]=(data){i,j,g[i][j]};
//printf("lo %d %d %d\n",i,j,num); build();
printf("%d\n",mcmf());
}

BZOJ 1937: [Shoi2004]Mst 最小生成树 [二分图最大权匹配]的更多相关文章

  1. [BZOJ 1937][Shoi2004]Mst 最小生成树

    传送门 $ \color{red} {solution:} $ 对于每条树边\(i\),其边权只可能变小,对于非树边\(j\),其边权只可能变大,所以对于任意非树边覆盖的树边有 \(wi - di & ...

  2. [BZOJ1937][SHOI2004]Mst最小生成树(KM算法,最大费用流)

    1937: [Shoi2004]Mst 最小生成树 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 802  Solved: 344[Submit][Sta ...

  3. 【BZOJ1937】[Shoi2004]Mst 最小生成树 KM算法(线性规划)

    [BZOJ1937][Shoi2004]Mst 最小生成树 Description Input 第一行为N.M,其中 表示顶点的数目, 表示边的数目.顶点的编号为1.2.3.…….N-1.N.接下来的 ...

  4. POJ2195 Going Home[费用流|二分图最大权匹配]

    Going Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 22088   Accepted: 11155 Desc ...

  5. Hdu2255 奔小康赚大钱(二分图最大权匹配KM算法)

    奔小康赚大钱 Problem Description 传说在遥远的地方有一个非常富裕的村落,有一天,村长决定进行制度改革:重新分配房子. 这可是一件大事,关系到人民的住房问题啊.村里共有n间房间,刚好 ...

  6. [ACM] HDU 2255 奔小康赚大钱 (二分图最大权匹配,KM算法)

    奔小康赚大钱 Problem Description 传说在遥远的地方有一个很富裕的村落,有一天,村长决定进行制度改革:又一次分配房子. 这但是一件大事,关系到人民的住房问题啊. 村里共同拥有n间房间 ...

  7. POJ2195 Going Home (最小费最大流||二分图最大权匹配) 2017-02-12 12:14 131人阅读 评论(0) 收藏

    Going Home Description On a grid map there are n little men and n houses. In each unit time, every l ...

  8. HDU2255 奔小康赚大钱 —— 二分图最大权匹配 KM算法

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2255 奔小康赚大钱 Time Limit: 1000/1000 MS (Java/Others)    ...

  9. 二分图最大权匹配——KM算法

    前言 这东西虽然我早就学过了,但是最近才发现我以前学的是假的,心中感慨万千(雾),故作此篇. 简介 带权二分图:每条边都有权值的二分图 最大权匹配:使所选边权和最大的匹配 KM算法,全称Kuhn-Mu ...

随机推荐

  1. oracle分页查询及原理分析(总结)

    oracle分页查询及原理分析(总结) oracle分页查询是开发总为常用的语句之一,一般情况下公司框架会提供只需套用,对于增删改查而言,查是其中最为关键也是最为难的一块,其中就有使用率最高的分页查询 ...

  2. [图像类名词解释][ RGB YUV HSV相关解释说明]

    一.概述 颜色通常用三个独立的属性来描述,三个独立变量综合作用,自然就构成一个空间坐标,这就是颜色空间.但被描述的颜色对象本身是客观的,不同颜色空间只是从不同的角度去衡量同一个对象.颜色空间按照基本机 ...

  3. [学习OpenCV攻略][009][从摄像机读入数据]

    cvCreateCameraCapture(设备ID) 创建一个摄像机视频,返回值是CvCapture*类型.设备ID表示设备的编号,如果有多个摄像机设备,-1表示随机选择一个设备. #include ...

  4. CSS3技巧巧妙使用:not(:last-of-type)简化你的css代码

    终于找到了一个好方法,使用:not(:last-of-type)简单方便,再也不要麻烦的单独使用:last-of-type了,不错! 应用场景:平时我们的列表一般都会有分割线,但是最后一个列表没有分割 ...

  5. Linux包管理器

    按Linux系统分类 Redhat系列:Redhat(本身就是Centos).Centos.Fedora等,采用Dpkg包管理器 Debian系列:Debian.Ubuntu等,使用RPM包管理器 R ...

  6. CentOS、Ubuntu、Debian三个linux比较异同[转]

    Linux有非常多的发行版本,从性质上划分,大体分为由商业公司维护的商业版本与由开源社区维护的免费发行版本. 商业版本以Redhat为代表,开源社区版本则以debian为代表.这些版本各有不同的特点, ...

  7. 八大免费SSL证书-给你的网站免费添加Https安全加密

    评论»   https://www.freehao123.com/top-8-free-ssl-cert/ 文章目录 Let's Encrypt StartSSL SSL CloudFlare SSL ...

  8. 一个简洁的PHP可逆加密函数(分享)

    http://www.jb51.net/article/38018.htm 本篇文章是对一个简洁的PHP可逆加密函数进行了详细的分析介绍,需要的朋友参考下   很多时候我们需要对数据进行加密解密,比如 ...

  9. yourphp常用标签

    方法/步骤 1 引入页面: 首页链接:{$site_url}  英文首页{$site_url}/en 面包屑导航: {:L(catpos)} {:L(home_font)} >       幻灯 ...

  10. NGINX 配置404错误页面转向

    什么是404页面 如果碰巧网站出了问题,或者用户试图访问一个并不存在的页面时,此时服务器会返回代码为404的错误信息,此时对应页面就是404页面.404页面的默认内容和具体的服务器有关.如果后台用的是 ...