BZOJ_1858_[Scoi2010]序列操作_线段树

Description

lxhgww最近收到了一个01序列,序列里面包含了n个数,这些数要么是0,要么是1,现在对于这个序列有五种变换操作和询问操作: 0 a b 把[a, b]区间内的所有数全变成0 1 a b 把[a, b]区间内的所有数全变成1 2 a b 把[a,b]区间内的所有数全部取反,也就是说把所有的0变成1,把所有的1变成0 3 a b 询问[a, b]区间内总共有多少个1 4 a b 询问[a, b]区间内最多有多少个连续的1 对于每一种询问操作,lxhgww都需要给出回答,聪明的程序员们,你们能帮助他吗?

Input

输入数据第一行包括2个数,n和m,分别表示序列的长度和操作数目 第二行包括n个数,表示序列的初始状态 接下来m行,每行3个数,op, a, b,(0 < = op < = 4,0 < = a < = b)

Output

对于每一个询问操作,输出一行,包括1个数,表示其对应的答案

Sample Input

10 10
0 0 0 1 1 0 1 0 1 1
1 0 2
3 0 5
2 2 2
4 0 4
0 3 6
2 3 7
4 2 8
1 0 5
0 5 6
3 3 9

Sample Output

5
2
6
5

HINT

对于30%的数据,1<=n, m<=1000 对于100%的数据,1< = n, m < = 100000


分析:线段树处理多个标记。

我这里是先下传取反标记,后下传覆盖标记。

这样的话。如果操作是先覆盖后取反,就在取反的函数中判断一下,如果有覆盖就把覆盖的值取反。

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 100050
#define ls p<<1
#define rs p<<1|1
int t[N<<2],cov[N<<2],rev[N<<2],n,m;
int lx[N<<2][2],rx[N<<2][2],nx[N<<2][2],siz[N<<2];
void pushup(int p) {
t[p]=t[ls]+t[rs];
for(int i=0;i<2;i++) {
if(nx[ls][i]==siz[ls]) lx[p][i]=siz[ls]+lx[rs][i];
else lx[p][i]=lx[ls][i];
if(nx[rs][i]==siz[rs]) rx[p][i]=siz[rs]+rx[ls][i];
else rx[p][i]=rx[rs][i];
nx[p][i]=max(max(rx[ls][i]+lx[rs][i],nx[ls][i]),nx[rs][i]);
}
}
void build(int l,int r,int p) {
cov[p]=-1;
siz[p]=r-l+1;
if(l==r) {
scanf("%d",&t[p]);
lx[p][1]=rx[p][1]=nx[p][1]=t[p];
lx[p][0]=rx[p][0]=nx[p][0]=!t[p];
return ;
}
int mid=l+r>>1;
build(l,mid,ls);
build(mid+1,r,rs);
pushup(p);
}
void pushdown(int p) {
if(rev[p]) {
t[ls]=siz[ls]-t[ls];
swap(lx[ls][0],lx[ls][1]);
swap(rx[ls][0],rx[ls][1]);
swap(nx[ls][0],nx[ls][1]);
if(cov[ls]!=-1)cov[ls]^=1;
rev[ls]^=1;
t[rs]=siz[rs]-t[rs];
swap(lx[rs][0],lx[rs][1]);
swap(rx[rs][0],rx[rs][1]);
swap(nx[rs][0],nx[rs][1]);
if(cov[rs]!=-1)cov[rs]^=1;
rev[rs]^=1;
rev[p]=0;
}
if(cov[p]!=-1) {
int d=cov[p];
cov[ls]=cov[rs]=d;
lx[ls][d]=rx[ls][d]=nx[ls][d]=siz[ls];
lx[rs][d]=rx[rs][d]=nx[rs][d]=siz[rs];
lx[ls][!d]=rx[ls][!d]=nx[ls][!d]=lx[rs][!d]=rx[rs][!d]=nx[rs][!d]=0;
t[ls]=siz[ls]*d;
t[rs]=siz[rs]*d;
cov[p]=-1;
}
}
void uprever(int l,int r,int x,int y,int p) {
if(x<=l&&y>=r) {
t[p]=siz[p]-t[p];
swap(lx[p][0],lx[p][1]);
swap(rx[p][0],rx[p][1]);
swap(nx[p][0],nx[p][1]);
rev[p]^=1;
if(cov[p]!=-1) cov[p]^=1;
return ;
}
pushdown(p);
int mid=l+r>>1;
if(x<=mid) uprever(l,mid,x,y,ls);
if(y>mid) uprever(mid+1,r,x,y,rs);
pushup(p);
}
void update(int l,int r,int x,int y,int c,int p) {
if(x<=l&&y>=r) {
cov[p]=c;
lx[p][c]=rx[p][c]=nx[p][c]=siz[p];
lx[p][!c]=rx[p][!c]=nx[p][!c]=0;
t[p]=siz[p]*c;
return ;
}
pushdown(p);
int mid=l+r>>1;
if(x<=mid) update(l,mid,x,y,c,ls);
if(y>mid) update(mid+1,r,x,y,c,rs);
pushup(p);
}
int qsum(int l,int r,int x,int y,int p) {
if(x<=l&&y>=r) return t[p];
pushdown(p);
int re=0,mid=l+r>>1;
if(x<=mid) re+=qsum(l,mid,x,y,ls);
if(y>mid) re+=qsum(mid+1,r,x,y,rs);
return re;
}
int qcon(int l,int r,int x,int y,int p) {
if(x<=l&&y>=r) return nx[p][1];
pushdown(p);
int ansl,ansr,ansm,mid=l+r>>1;
if(y<=mid) return qcon(l,mid,x,y,ls);
else if(x>mid) return qcon(mid+1,r,x,y,rs);
else {
ansl=qcon(l,mid,x,y,ls);
ansr=qcon(mid+1,r,x,y,rs);
ansm=min(mid-x+1,rx[ls][1])+min(y-mid,lx[rs][1]);
return max(max(ansl,ansr),ansm);
}
}
int main() {
scanf("%d%d",&n,&m);
int i,opt,x,y;
build(1,n,1);
for(i=1;i<=m;i++) {
scanf("%d%d%d",&opt,&x,&y);
x++;y++;
if(opt==0) {
update(1,n,x,y,0,1);
}else if(opt==1) {
update(1,n,x,y,1,1);
}else if(opt==2) {
uprever(1,n,x,y,1);
}else if(opt==3) {
printf("%d\n",qsum(1,n,x,y,1));
}else {
printf("%d\n",qcon(1,n,x,y,1));
}
}
}

BZOJ_1858_[Scoi2010]序列操作_线段树的更多相关文章

  1. BZOJ1858 [Scoi2010]序列操作(线段树)

    题目链接 [Scoi2010]序列操作 考验代码能力的一道好题. 思想还是很简单的(直接上线段树),但是比较难写. #include <bits/stdc++.h> using names ...

  2. [SCOI2010]序列操作 BZOJ1858 线段树

    题目描述 lxhgww最近收到了一个01序列,序列里面包含了n个数,这些数要么是0,要么是1,现在对于这个序列有五种变换操作和询问操作: 0 a b 把[a, b]区间内的所有数全变成0 1 a b ...

  3. [bzoj2962]序列操作_线段树_区间卷积

    序列操作 bzoj-2962 题目大意:给定一个n个数的正整数序列,m次操作.支持:1.区间加:2.区间取相反数:3.区间求选c个数的乘积和. 注释:$1\le n,m\le 5\cdot 10^4$ ...

  4. BZOJ_2962_序列操作_线段树

    Description 有一个长度为n的序列,有三个操作1.I a b c表示将[a,b]这一段区间的元素集体增加c,2.R a b表示将[a,b]区间内所有元素变成相反数,3.Q a b c表示询问 ...

  5. bzoj 1858: [Scoi2010]序列操作【线段树】

    合并中间那块的时候没取max--WAWAWA 在线段树上维护一堆东西,分别是len区间长度,sm区间内1的个数,ll0区间从左开始最长连续0,ml0区间中间最长连续0,rl0区间从右开始最长连续0,l ...

  6. 【BZOJ1858】序列操作(线段树)

    [BZOJ1858]序列操作(线段树) 题面 BZOJ 题解 这题思路很简单,细节很烦,很码 维护区间翻转和区间赋值标记 当打到区间赋值标记时直接覆盖掉翻转标记 下放标记的时候先放赋值标记再放翻转标记 ...

  7. 【BZOJ2962】序列操作(线段树)

    [BZOJ2962]序列操作(线段树) 题面 BZOJ 题解 设\(s[i]\)表示区间内选择\(i\)个数的乘积的和 考虑如何向上合并? \(s[k]=\sum_{i=0}^klson.s[i]*r ...

  8. bzoj1858SCOI 序列操作 (线段树)

    题目大意: 给定一个长度为n的01序列为,现在有m种操作 \(0\ a\ b\) 把\([a,b]\)的数全部修改为0 \(1\ a\ b\) 把\([a,b]\)的数全部修改为1 \(2\ a\ b ...

  9. 序列操作 BZOJ2962 线段树

    分析: 数据范围表示:c特别的小(c<20) 我们可以考虑nlogn*c^2的算法. 线段树维护区间信息:f[i]表示在[l,r]这段区间中选择i个数相乘的和. 因此,我们可以将区间看成一个点, ...

随机推荐

  1. TensorFlow学习记录(一)

    windows下的安装: 首先访问https://storage.googleapis.com/tensorflow/ 找到对应操作系统下,对应python版本,对应python位数的whl,下载. ...

  2. Django开发环境静态文件访问配置

    settings主要配置项目: STATIC_ROOT = 'D:\Dev\jpDev\czxg\assets' #这个地方是所在系统标准目录文法配置 STATIC_URL = '/static/' ...

  3. echarts实现中国地图数据展示

    在项目中运用到图形展示数据太常见了,echarts是一款使用率非常高的插件工具,很多大平台都是使用echarts: 一般运用到条形.折线.扇形图,今天说一说在中国地图上展示各地数据: 首先要准备中国地 ...

  4. C/C++静态代码安全检查工具

    静态代码安全检查工具是一种能够帮助程序员自动检测出源程序中是否存在安全缺陷的软件.它通过逐行分析程序的源代码,发现软件中潜在的安全漏洞.本文针对 C/C++语言程序设计中容易存在的多种安全问题,分别分 ...

  5. 一文读懂阻塞、非阻塞、同步、异步IO

    介绍 在谈及网络IO的时候总避不开阻塞.非阻塞.同步.异步.IO多路复用.select.poll.epoll等这几个词语.在面试的时候也会被经常问到这几个的区别.本文就来讲一下这几个词语的含义.区别以 ...

  6. c语言中realloc()函数解析

    一.基本特性 1. realloc()函数可以重用或扩展以前用malloc().calloc()及realloc()函数自身分配的内存. 2. realloc()函数需两个参数:一个是包含地址的指针( ...

  7. post 和 get 的区别,直指本质

    在我们初入java编程之路的时候,面试往往会有一个面试题:get和post的区别是什么?那么你真的知道他们的区别吗?接下来抽丝剥茧,让我们看看get和post到底什么东西,首先从本质的角度看get和p ...

  8. nginx与Apache的对比以及优缺点

    本文来自其他文章.如有好的问题,希望各位大神多多分享, 谢谢了..... 今天准备较详细的对比一下apache httpd与nginx两个web服务器的异同点.优缺点.由于我并不是做web开发的,所以 ...

  9. 关于js中循环遍历中顺序执行多个嵌套ajax的问题

    就是业务上需要完成一个功能,这个功能需要依次调用四个接口,后面接口的参数都依赖于前一个接口的返回值. 类似这样: var objArr = "从其他逻辑获得"; for(var n ...

  10. 消息中间件activemq的使用场景介绍(结合springboot的示例)

    一.消息队列概述 消息队列中间件是分布式系统中重要的组件,主要解决应用耦合,异步消息,流量削锋等问题.实现高性能,高可用,可伸缩和最终一致性架构.是大型分布式系统不可缺少的中间件. 目前在生产环境,使 ...