1.使用线程池的好处?

第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。

第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。

第三:提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。

可以先看下线程池的类图:

2.ThreadPoolExecutor的使用

线程池的状态:

A.线程池的创建

我们可以通过java.util.concurrent.ThreadPoolExecutor来创建一个线程池。

new  ThreadPoolExecutor(corePoolSize, maximumPoolSize, keepAliveTime, milliseconds,runnableTaskQueue, handler);

创建线程池需要的参数介绍:

  • corePoolSize(线程池的基本大小):当提交一个任务到线程池时,线程池会创建一个线程来执行任务,即使其他空闲的基本线程能够执行新任务也会创建线程,等到需要执行的任务数大于线程池基本大小时就不再创建。如果调用了线程池的prestartAllCoreThreads方法,线程池会提前创建并启动所有基本线程。

  • runnableTaskQueue(任务队列):用于保存等待执行的任务的阻塞队列。 可以选择以下几个阻塞队列。

    • ArrayBlockingQueue:是一个基于数组结构的有界阻塞队列,此队列按 FIFO(先进先出)原则对元素进行排序。
    • LinkedBlockingQueue:一个基于链表结构的阻塞队列,此队列按FIFO (先进先出) 排序元素,吞吐量通常要高于ArrayBlockingQueue。静态工厂方法Executors.newFixedThreadPool()使用了这个队列。
    • SynchronousQueue:一个不存储元素的阻塞队列。每个插入操作必须等到另一个线程调用移除操作,否则插入操作一直处于阻塞状态,吞吐量通常要高于LinkedBlockingQueue,静态工厂方法Executors.newCachedThreadPool使用了这个队列。
    • PriorityBlockingQueue:一个具有优先级的无限阻塞队列。
  • maximumPoolSize(线程池最大大小):线程池允许创建的最大线程数。如果队列满了,并且已创建的线程数小于最大线程数,则线程池会再创建新的线程执行任务。值得注意的是如果使用了无界的任务队列这个参数就没什么效果。

  • ThreadFactory:用于设置创建线程的工厂,可以通过线程工厂给每个创建出来的线程设置更有意义的名字。

  • RejectedExecutionHandler(饱和策略):当队列和线程池都满了,说明线程池处于饱和状态,那么必须采取一种策略处理提交的新任务。这个策略默认情况下是AbortPolicy,表示无法处理新任务时抛出异常。以下是JDK1.5提供的四种策略。

    • AbortPolicy:直接抛出异常。
    • CallerRunsPolicy:只用调用者所在线程来运行任务。
    • DiscardOldestPolicy:丢弃队列里最近的一个任务,并执行当前任务。
    • DiscardPolicy:不处理,丢弃掉。
    • 当然也可以根据应用场景需要来实现RejectedExecutionHandler接口自定义策略。如记录日志或持久化不能处理的任务。
  • keepAliveTime(线程活动保持时间):线程池的工作线程空闲后,保持存活的时间。所以如果任务很多,并且每个任务执行的时间比较短,可以调大这个时间,提高线程的利用率。

  • TimeUnit(线程活动保持时间的单位):可选的单位有天(DAYS),小时(HOURS),分钟(MINUTES),毫秒(MILLISECONDS),微秒(MICROSECONDS, 千分之一毫秒)和毫微秒(NANOSECONDS, 千分之一微秒)。

B.向线程池提交任务

  提交任务有execute()和submit()两个方法,下面看看他俩的区别:

  ①接收参数不同

  execute()的参数是Runnable,submit()参数可以是Runnable,也可以是Cable。

  ②返回值不同

  execute()没有返回值,submit()有返回值Future。通过Future可以获取各个线程的完成情况,是否有异常,还能试图取消任务的执行。详见》》》》》》》》

  execute()很好理解,下面看个使用submit()获取返回值的例子,假设我有很多更新各种数据的task,我希望如果其中一个task失败,其它的task就不需要执行了。那我就需要catch Future.get抛出的异常,然后终止其它task的执行,代码如下:

 public class SubmitTest {

     public static void main(String[] args) {
ExecutorService executorService = Executors.newCachedThreadPool();
List<Future<String>> futureList = new ArrayList<>();
// 创建10个任务并执行
for (int i = 0; i < 10; i++) {
// 使用ExecutorService执行Callable类型的任务,并将结果保存在future变量中
Future<String> future = executorService.submit(new TaskRunn(i));
// 将任务执行结果存储到List中
futureList.add(future);
}
// 正常关闭线程池
executorService.shutdown();
// 遍历任务的结果
for (Future<String> future : futureList) {
try {
System.out.println(future.get());
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
// 出错了停止所有的线程
executorService.shutdownNow();
e.printStackTrace();
return;
}
}
}
} class TaskRunn implements Callable<String>{ private int id;
public TaskRunn(int id) {
this.id = id;
} /**
* 任务的具体过程,一旦任务传给ExecutorService的submit方法,则该方法自动在一个线程上执行
*/
@Override
public String call() throws Exception {
System.out.println("call() begin..."+id+"//"+Thread.currentThread().getName());
if (new Random().nextInt(10) > 5) {
throw new TaskException("task err:"+id+"//"+Thread.currentThread().getName());
}
// 模拟业务耗时
for (int i = 0; i < 10; i++) {
Thread.sleep(1000);
}
return "result:"+id+"//" +Thread.currentThread().getName();
}
} // 定义自己的异常
class TaskException extends Exception{
public TaskException(String mess) {
super(mess);
}
}

c.线程池的关闭

我们可以通过调用线程池的shutdown或shutdownNow方法来关闭线程池,它们的区别详见 http://www.cnblogs.com/shamo89/p/6703563.html

可以简单的总结为shutdown()是正常结束线程池,已经添加进去正在执行的线程正常执行,没添加的线程不会再添加。shutdownNow()则是强制中断线程池里的线程,但是因为是通过interuppt()来执行的,所以会有局限性,另外该方法会返回未执行的任务。

所以通常调shutdown来正常关闭线程池,如果任务不一定要执行完,则可以调用shutdownNow。

3. 线程池的分析

A.流程分析:线程池的主要工作流程如下图:

从上图我们可以看出,当提交一个新任务到线程池时,线程池的处理流程如下:

  1. 首先线程池判断基本线程池是否已满?没满,创建一个工作线程来执行任务。满了,则进入下个流程。
  2. 其次线程池判断工作队列是否已满?没满,则将新提交的任务存储在工作队列里。满了,则进入下个流程。
  3. 最后线程池判断整个线程池是否已满?没满,则创建一个新的工作线程来执行任务,满了,则交给饱和策略来处理这个任务。

B.源码分析

上面的流程分析让我们很直观的了解了线程池的工作原理,让我们再通过源代码来看看是如何实现的。线程池执行任务的方法如下:

 public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
//如果线程数小于基本线程数,则创建线程并执行当前任务
if (poolSize >= corePoolSize || !addIfUnderCorePoolSize(command)) {
//如线程数大于等于基本线程数或线程创建失败,则将当前任务放到工作队列中。
if (runState == RUNNING && workQueue.offer(command)) {
if (runState != RUNNING || poolSize == 0)
ensureQueuedTaskHandled(command);
}
//如果线程池不处于运行中或任务无法放入队列,并且当前线程数量小于最大允许的线程数量,
// 则创建一个线程执行任务。
else if (!addIfUnderMaximumPoolSize(command))
//抛出RejectedExecutionException异常
reject(command); // is shutdown or saturated
}
}

C.工作线程

线程池创建线程时,会将线程封装成工作线程Worker,Worker在执行完任务后,还会无限循环获取工作队列里的任务来执行。我们可以从Worker的run方法里看到这点:

 public void run() {
try {
Runnable task = firstTask;
firstTask = null;
while (task != null || (task = getTask()) != null) {
runTask(task);
task = null;
}
} finally {
workerDone(this);
}
}

4. 合理的配置线程池

要想合理的配置线程池,就必须首先分析任务特性,可以从以下几个角度来进行分析:

  1. 任务的性质:CPU密集型任务,IO密集型任务和混合型任务。
  2. 任务的优先级:高,中和低。
  3. 任务的执行时间:长,中和短。
  4. 任务的依赖性:是否依赖其他系统资源,如数据库连接。

任务性质不同的任务可以用不同规模的线程池分开处理。

CPU密集型任务配置尽可能小的线程,如配置Ncpu+1个线程的线程池。

IO密集型任务则由于线程并不是一直在执行任务,则配置尽可能多的线程,如2*Ncpu。

混合型的任务,如果可以拆分,则将其拆分成一个CPU密集型任务和一个IO密集型任务,只要这两个任务执行的时间相差不是太大,那么分解后执行的吞吐率要高于串行执行的吞吐率,如果这两个任务执行时间相差太大,则没必要进行分解。

我们可以通过Runtime.getRuntime().availableProcessors()方法获得当前设备的CPU个数。

优先级不同的任务可以使用优先级队列PriorityBlockingQueue来处理。它可以让优先级高的任务先得到执行,需要注意的是如果一直有优先级高的任务提交到队列里,那么优先级低的任务可能永远不能执行。

执行时间不同的任务可以交给不同规模的线程池来处理,或者也可以使用优先级队列,让执行时间短的任务先执行。

依赖数据库连接池的任务,因为线程提交SQL后需要等待数据库返回结果,如果等待的时间越长CPU空闲时间就越长,那么线程数应该设置越大,这样才能更好的利用CPU。

建议使用有界队列,有界队列能增加系统的稳定性和预警能力,可以根据需要设大一点,比如几千。

有一次我们组使用的后台任务线程池的队列和线程池全满了,不断的抛出抛弃任务的异常,通过排查发现是数据库出现了问题,导致执行SQL变得非常缓慢,因为后台任务线程池里的任务全是需要向数据库查询和插入数据的,所以导致线程池里的工作线程全部阻塞住,

任务积压在线程池里。

如果当时我们设置成无界队列,线程池的队列就会越来越多,有可能会撑满内存,导致整个系统不可用,而不只是后台任务出现问题。

当然我们的系统所有的任务是用的单独的服务器部署的,而我们使用不同规模的线程池跑不同类型的任务,但是出现这样问题时也会影响到其他任务。

5. 线程池的监控

通过线程池提供的参数进行监控。线程池里有一些属性在监控线程池的时候可以使用

  • taskCount:线程池需要执行的任务数量。
  • completedTaskCount:线程池在运行过程中已完成的任务数量。小于或等于taskCount。
  • largestPoolSize:线程池曾经创建过的最大线程数量。通过这个数据可以知道线程池是否满过。如等于线程池的最大大小,则表示线程池曾经满了。
  • getPoolSize:线程池的线程数量。如果线程池不销毁的话,池里的线程不会自动销毁,所以这个大小只增不+ getActiveCount:获取活动的线程数。

通过扩展线程池进行监控。通过继承线程池并重写线程池的beforeExecute,afterExecute和terminated方法,我们可以在任务执行前,执行后和线程池关闭前干一些事情。如监控任务的平均执行时间,最大执行时间和最小执行时间等。这几个方法在线程池里是空方法。如:

protected void beforeExecute(Thread t, Runnable r) { }

线程池ThreadPoolExecutor类的使用的更多相关文章

  1. Java线程池ThreadPoolExecutor类源码分析

    前面我们在java线程池ThreadPoolExecutor类使用详解中对ThreadPoolExector线程池类的使用进行了详细阐述,这篇文章我们对其具体的源码进行一下分析和总结: 首先我们看下T ...

  2. 线程池 ThreadPoolExecutor 类的源码解析

    线程池 ThreadPoolExecutor 类的源码解析: 1:数据结构的分析: private final BlockingQueue<Runnable> workQueue;  // ...

  3. Java线程池 ThreadPoolExecutor类

    什么是线程池? java线程池是将大量的线程集中管理的类, 包括对线程的创建, 资源的管理, 线程生命周期的管理. 当系统中存在大量的异步任务的时候就考虑使用java线程池管理所有的线程, 从而减少系 ...

  4. java线程池ThreadPoolExecutor类使用详解

    在<阿里巴巴java开发手册>中指出了线程资源必须通过线程池提供,不允许在应用中自行显示的创建线程,这样一方面是线程的创建更加规范,可以合理控制开辟线程的数量:另一方面线程的细节管理交给线 ...

  5. [3]java1.8线程池—ThreadPoolExecutor

    Wiki 上是这样解释的:Thread Pool 作用:利用线程池可以大大减少在创建和销毁线程上所花的时间以及系统资源的开销! 下面主要讲下线程池中最重要的一个类 ThreadPoolExecutor ...

  6. Java 线程池 ThreadPoolExecutor 的那些事儿

    线程池基础知识 ThreadPoolExecutor : 一个线程池 Executors : 线程池工厂,通过该类可以取得一个拥有特定功能的线程池 ThreadPoolExecutor类实现了Exec ...

  7. java线程池ThreadPoolExecutor使用简介

    一.简介线程池类为 java.util.concurrent.ThreadPoolExecutor,常用构造方法为:ThreadPoolExecutor(int corePoolSize, int m ...

  8. 线程池ThreadPoolExecutor

    线程池类为 java.util.concurrent.ThreadPoolExecutor,常用构造方法为: ThreadPoolExecutor(int corePoolSize, int maxi ...

  9. 关于线程池ThreadPoolExecutor使用总结

    本文引用自: http://blog.chinaunix.net/uid-20577907-id-3519578.html 一.简介 线程池类为 java.util.concurrent.Thread ...

随机推荐

  1. 纯命令提交代码到git仓库(教你怎么装逼)

    如果不喜欢用命令的请点链接:http://blog.csdn.net/xiangzhihong8/article/details/50715427 我这里用纯命令,主要是因为这两天不知道什么原因,ba ...

  2. 对MBProgressHUD第三方进行源码分析

    GitHub源码地址,及时更新:iOS-Source-Code-Analyze MBProgressHUD是一个为iOS app添加透明浮层 HUD 的第三方框架.作为一个 UI 层面的框架,它的实现 ...

  3. 2014年终开发感悟(Tamic)

    接触Anroid已经一年过了,眼看就要2015年的到来,但是在这不长不短的时间以来,虽然没给IT圈贡献过什么大的开源项目,但是自己也一直在坚持着自己的爱好,也在不断的更新着自己博客,有  一次项目中偶 ...

  4. Media Player Classic - HC 源代码分析 2:核心类 (CMainFrame)(1)

    ===================================================== Media Player Classic - HC 源代码分析系列文章列表: Media P ...

  5. How tomcat works 读书笔记十七 启动tomcat 上

    一路跋山涉水,这是最后一章了. 关于tomcat的启动,有两个类,一个是Catalina类,一个是Bootstrap类. 理论上,两个类可以和到一起,但是为了支持多种运行模式,又把他们分开了. 为了让 ...

  6. 【34】包含min函数的stack

    题目: 实现一个包含min函数的栈,min和push,pop都是o(1)时间 思路: 采用一个辅助的栈,来存储不同阶段的最小值 - 代码: push(int value){ //data是数据栈,mi ...

  7. 关于java和c++中布尔量的比较

    在c++中允许 bool 量和 int 整形常量相互转换,并且用cout<<true; 在控制台上可以输出为 1 int main(int argc, _TCHAR* argv[]) { ...

  8. shim & polyfill

    在JavaScript中,经常提到shim和polyfill,polyfill是shim的一种.shim 是将不同 api 封装成一种,比如 jQuery 的 $.ajax 封装了 XMLHttpRe ...

  9. JS(作用域和闭包)

    1.对变量提升的理解 1.变量定义(上下文) 2.函数声明 2.说明 this 几种不同的使用场景 常见用法 1.作为构造函数执行 2.作为对象属性执行 3.作为普通函数执行(this === win ...

  10. 排序算法入门之归并排序(java实现)

    归并排序是采用分治法的典型应用. 参考<数据结构与算法分析-Java语言描述> 归并排序其实要做两件事: (1)"分解"--将序列每次折半划分. (2)"合并 ...