Given two strings s1, s2, find the lowest ASCII sum of deleted characters to make two strings equal.

Example 1:

Input: s1 = "sea", s2 = "eat"
Output: 231
Explanation: Deleting "s" from "sea" adds the ASCII value of "s" (115) to the sum.
Deleting "t" from "eat" adds 116 to the sum.
At the end, both strings are equal, and 115 + 116 = 231 is the minimum sum possible to achieve this.

Example 2:

Input: s1 = "delete", s2 = "leet"
Output: 403
Explanation: Deleting "dee" from "delete" to turn the string into "let",
adds 100[d]+101[e]+101[e] to the sum. Deleting "e" from "leet" adds 101[e] to the sum.
At the end, both strings are equal to "let", and the answer is 100+101+101+101 = 403.
If instead we turned both strings into "lee" or "eet", we would get answers of 433 or 417, which are higher.

Note:

  • 0 < s1.length, s2.length <= 1000.
  • All elements of each string will have an ASCII value in [97, 122].

这道题给了我们两个字符串,让我们删除一些字符使得两个字符串相等,我们希望删除的字符的ASCII码最小。这道题跟之前那道Delete Operation for Two Strings极其类似,那道题让求删除的最少的字符数,这道题换成了ASCII码值。其实很多大厂的面试就是这种改动,虽然很少出原题,但是这种小范围的改动却是很经常的,所以当背题侠是没有用的,必须要完全掌握了解题思想,并能举一反三才是最重要的。看到这种玩字符串又是求极值的题,想都不要想直接上DP,我们建立一个二维数组dp,其中dp[i][j]表示字符串s1的前i个字符和字符串s2的前j个字符变相等所要删除的字符的最小ASCII码累加值。那么我们可以先初始化边缘,即有一个字符串为空的话,那么另一个字符串有多少字符就要删多少字符,才能变空字符串。所以我们初始化dp[0][j]和dp[i][0],计算方法就是上一个dp值加上对应位置的字符,有点像计算累加数组的方法,由于字符就是用ASCII表示的,所以我们不用转int,直接累加就可以。这里我们把dp[i][0]的计算放入大的循环中计算,是为了少写一个for循环。好,现在我们来看递推公式,需要遍历这个二维数组的每一个位置即dp[i][j],当对应位置的字符相等时,s1[i-1] == s2[j-1],(注意由于dp数组的i和j是从1开始的,所以字符串中要减1),那么我们直接赋值为上一个状态的dp值,即dp[i-1][j-1],因为已经匹配上了,不用删除字符。如果s1[i-1] != s2[j-1],那么就有两种情况,我们可以删除s[i-1]的字符,且加上被删除的字符的ASCII码到上一个状态的dp值中,即dp[i-1][j] + s1[i-1],或者删除s[j-1]的字符,且加上被删除的字符的ASCII码到上一个状态的dp值中,即dp[i][j-1] + s2[j-1]。这不难理解吧,比如sea和eat,当首字符s和e失配了,那么有两种情况,要么删掉s,用ea和eat继续匹配,或者删掉e,用sea和at继续匹配,记住删掉的字符一定要累加到dp值中才行,参见代码如下:

解法一:

class Solution {
public:
int minimumDeleteSum(string s1, string s2) {
int m = s1.size(), n = s2.size();
vector<vector<int>> dp(m + , vector<int>(n + , ));
for (int j = ; j <= n; ++j) dp[][j] = dp[][j - ] + s2[j - ];
for (int i = ; i <= m; ++i) {
dp[i][] = dp[i - ][] + s1[i - ];
for (int j = ; j <= n; ++j) {
dp[i][j] = (s1[i - ] == s2[j - ]) ? dp[i - ][j - ] : min(dp[i - ][j] + s1[i - ], dp[i][j - ] + s2[j - ]);
}
}
return dp[m][n];
}
};

我们也可以优化空间复杂度,使用一个一维数组dp,其中dp[i]表示字符串s1和字符串s2的前i个字符变相等所要删除的字符的最小ASCII码累加值。刚开始还是要初始化dp[j],这里用变量t1和t2保存上一个状态的值,并不断更新。如果面试官没有特别的要求,还是用二维dp数组吧,毕竟逻辑更清晰一些,一维的容易写错~

解法二:

class Solution {
public:
int minimumDeleteSum(string s1, string s2) {
int m = s1.size(), n = s2.size();
vector<int> dp(n + , );
for (int j = ; j <= n; ++j) dp[j] = dp[j - ] + s2[j - ];
for (int i = ; i <= m; ++i) {
int t1 = dp[];
dp[] += s1[i - ];
for (int j = ; j <= n; ++j) {
int t2 = dp[j];
dp[j] = (s1[i - ] == s2[j - ]) ? t1 : min(dp[j] + s1[i - ], dp[j - ] + s2[j - ]);
t1 = t2;
}
}
return dp[n];
}
};

下面这种方法思路也很巧妙,反其道而行之,相当于先计算了字符串s1和s2的最大相同子序列,在这道题中就是最大相同子序列的ASCII码值,然后用s1和s2的所有字符之和减去这个最大ASCII码值的两倍,就是要删除的字符的最小ASCII码值了。那么还是建立二维数组dp,其中dp[i][j]表示字符串s1的前i个字符和字符串s2点前j个字符中的最大相同子序列的ASCII值。然后我们遍历所有的位置,当对应位置的字符相等时,s1[i-1] == s2[j-1],那么我们直接赋值为上一个状态的dp值加上这个相同的字符,即dp[i-1][j-1] + s1[i-1],注意这里跟解法一不同之处,因为dp的定义不同,所以写法不同。如果s1[i-1] != s2[j-1],那么就有两种情况,我们可以删除s[i-1]的字符,即dp[i-1][j],或者删除s[j-1]的字符,即dp[i][j-1],取二者中最大值赋给dp[i][j]。最后分别算出s1和s2的累加值,减去两倍的dp最大值即可,参见代码如下:

解法三:

class Solution {
public:
int minimumDeleteSum(string s1, string s2) {
int m = s1.size(), n = s2.size();
vector<vector<int>> dp(m + , vector<int>(n + , ));
for (int i = ; i <= m; ++i) {
for (int j = ; j <= n; ++j) {
if (s1[i - ] == s2[j - ]) dp[i][j] = dp[i - ][j - ] + s1[i - ];
else dp[i][j] = max(dp[i - ][j], dp[i][j - ]);
}
}
int sum1 = accumulate(s1.begin(), s1.end(), );
int sum2 = accumulate(s2.begin(), s2.end(), );
return sum1 + sum2 - * dp[m][n];
}
};

类似题目:

Edit Distance

Longest Increasing Subsequence

参考资料:

https://discuss.leetcode.com/topic/107995/concise-dp-solution

https://discuss.leetcode.com/topic/107980/c-dp-with-explanation

https://discuss.leetcode.com/topic/108029/lcs-variation-solution-python-c

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Minimum ASCII Delete Sum for Two Strings 两个字符串的最小ASCII删除和的更多相关文章

  1. [LeetCode] 712. Minimum ASCII Delete Sum for Two Strings 两个字符串的最小ASCII删除和

    Given two strings s1, s2, find the lowest ASCII sum of deleted characters to make two strings equal. ...

  2. Leetcode之动态规划(DP)专题-712. 两个字符串的最小ASCII删除和(Minimum ASCII Delete Sum for Two Strings)

    Leetcode之动态规划(DP)专题-712. 两个字符串的最小ASCII删除和(Minimum ASCII Delete Sum for Two Strings) 给定两个字符串s1, s2,找到 ...

  3. [LeetCode] 583. Delete Operation for Two Strings 两个字符串的删除操作

    Given two words word1 and word2, find the minimum number of steps required to make word1 and word2 t ...

  4. LN : leetcode 712 Minimum ASCII Delete Sum for Two Strings

    lc 712 Minimum ASCII Delete Sum for Two Strings 712 Minimum ASCII Delete Sum for Two Strings Given t ...

  5. LC 712. Minimum ASCII Delete Sum for Two Strings

    Given two strings s1, s2, find the lowest ASCII sum of deleted characters to make two strings equal. ...

  6. [LeetCode] Delete Operation for Two Strings 两个字符串的删除操作

    Given two words word1 and word2, find the minimum number of steps required to make word1 and word2 t ...

  7. Java实现 LeetCode 712 两个字符串的最小ASCII删除和(最长公共子串&&ASCII值最小)

    712. 两个字符串的最小ASCII删除和 给定两个字符串s1, s2,找到使两个字符串相等所需删除字符的ASCII值的最小和. 示例 1: 输入: s1 = "sea", s2 ...

  8. 【leetcode】712. Minimum ASCII Delete Sum for Two Strings

    题目如下: 解题思路:本题和[leetcode]583. Delete Operation for Two Strings 类似,区别在于word1[i] != word2[j]的时候,是删除word ...

  9. [Swift]LeetCode712. 两个字符串的最小ASCII删除和 | Minimum ASCII Delete Sum for Two Strings

    Given two strings s1, s2, find the lowest ASCII sum of deleted characters to make two strings equal. ...

随机推荐

  1. 测试对bug如何分析和定位

    如何去区分一个功能测试工程师的水平高和低? 可以从很多个方面去检查,比如测试的思路, 比如测试用例的覆盖度?,比如测试出bug是否能够定位到根因? 上面说的各个方面都很合理,那我们平常如何如更深的定位 ...

  2. Android权限Uri.parse的几种用法(转载)

    1,调web浏览器 Uri myBlogUri = Uri.parse("http://xxxxx.com"); returnIt = new Intent(Intent.ACTI ...

  3. Jedis操作Redis

    Jedis操作Redis的常用封装方法 @Resource(name="jedispool") private JedisPool pool=null; /** * 设置缓存对象过 ...

  4. hosts文件路径及文件介绍

    路径:WINDOWS/system32/drivers/etc/hosts 内容127.0.0.1       localhost 一. Hosts文件的位置 很多用户都知道在Window系统中有个H ...

  5. JQuery操作option的添加、删除、取值

    1. $("#select_id").change(function(){//code...}); //为Select添加事件,当选择其中一项时触发 2. var checkTex ...

  6. [福大软工] W班 总成绩排行榜

    评分链接 作业1   作业2    作业3    作业4 总分排名

  7. Beta总结篇

    45°炸 031502601 蔡鸿杰 031502604 陈甘霖 031502632 伍晨薇 一.项目预期进展及现实进展 项目预期计划 现实进展 Github使用 √ 日拍 (调用相机.相册) √ 足 ...

  8. 十款不容错过的Swift iOS开源项目及介绍

    1.十款不容错过的Swift iOS开源项目. http://www.csdn.net/article/2014-10-16/2822083-swift-ios-open-source-project ...

  9. *.db-journal 是什么(android sqlite )数据库删除缓存

    sqlite的官方文档,发现该文件是sqlite的一个临时的日志文件,主要用于sqlite数据库的事务回滚操作了.在事务开始时产生,在事务操作完毕时自动删除,当程序发生崩溃或一些意外情况让程序非法结束 ...

  10. JAVA_SE基础——72.自定义线程

    进程 :  正在执行的程序称作为一个进程.  进程负责了内存空间的划分.   问题: windows号称是多任务的操作系统,那么windows是同时运行多个应用程序吗?从宏观的角度: windows确 ...