CF 979D Kuro and GCD and XOR and SUM(异或 Trie)
CF 979D Kuro and GCD and XOR and SUM(异或 Trie)
给出q(<=1e5)个操作。操作分两种,一种是插入一个数u(<=1e5),另一种是给出三个数x,k,s(<=1e5),求当前所有u中满足,k|u,x+u<=s,且\(x\oplus u\)最大的u。
做法好神啊。关于异或的问题有一种常见做法,就是利用01trie来查找在一堆数里面,哪个数与x的异或值最大。这道题就是这个思路。如果去掉k必须整除v这个条件,那么就转化成了上一个问题(只不过有最大值的限制,怎么解决具体看代码)。
这道题的做法非常神奇。我们建1e5个Trie,第i个Trie中插入值为i的倍数的数。这样,查询x,k,s时,只要查询第k个Trie即可,因为里面的数一定满足k|v。插入时要遍历u的所有因数si,然后将u插入第si个Trie。
注意,异或运算是在尾部对齐的,但是要在Trie上贪心,所以必须在插入和查询的数前补零,使他们长度相同。
分析一波复杂度:
- 预处理:我们需要预处理出u的因数。u的最大值为Max=1e5。用类似筛法的方法,时间复杂度是\(O(Max(1+\frac{1}{2}+\frac{1}{3}...+\frac{1}{Max}))=O(MaxInMax)\)。
- 查询:就是Trie上的查询,总时间复杂度为\(O(qlog_2Max)\)。
- 插入:一个数最多只有\(log_2(Max)\)个因数(\(2*10^9\)内因数最多的数之一是1837836000,有1536个因数),所以总的时间复杂度为\(O(qlog^2_2(Max))\)。
- 空间复杂度:最多插入\(qlog_2(Max)\)个数,因此空间复杂度为\(qlog_2^2(Max)\)。
果然只能膜拜膜拜。
#include <cstdio>
#include <vector>
using namespace std;
const int maxnum=1e5+5, maxq=1e5+5, maxn=maxq*17*17, INF=1e9;
//maxnum指插入的数的最大值 maxq指查询的最多数目
//maxn指结点的最多数目(=maxq*插入几个trie*插入数的二进制长度)
int s[maxn][2], minm[maxn], v[maxn], tot;
int q, root[maxnum], use[maxnum];
vector<int> div[maxnum];
void init(){
for (int i=1; i<maxnum; ++i)
for (int j=i; j<maxnum; j+=i)
div[j].push_back(i);
}
//把x插到对应的trie里,注意维护子树中的最小数 l:处理到从左到右第几位
void insert(int &now, int x, int l){
if (!now){ now=++tot; minm[now]=INF; }
minm[now]=min(minm[now], x);
if (l==-1){ v[now]+=x; return; }
if ((x>>l)&1) insert(s[now][1], x, l-1);
else insert(s[now][0], x, l-1);
}
//要找到v<=lim,并且x^v尽量大(贪心)。函数返回v
//注意由于没有删除操作,路径底下一定有点。
int query(int now, int x, int lim, int l){ //l:第几位
if (l==-1) return v[now];
int s0=s[now][0], s1=s[now][1];
if (!s0||minm[s0]>lim) return query(s[now][1], x, lim, l-1);
if (!s1||minm[s1]>lim) return query(s[now][0], x, lim, l-1);
if ((x>>l)&1) return query(s[now][0], x, lim, l-1);
else return query(s[now][1], x, lim, l-1);
}
int main(){
init();
scanf("%d", &q); int op, x, k, s;
for (int i=0; i<q; ++i){
scanf("%d", &op);
if (op==1){
scanf("%d", &x);
if (use[x]) continue; use[x]=1;
for (int j=0; j<div[x].size(); ++j)
insert(root[div[x][j]], x, 18);
} else {
scanf("%d%d%d", &x, &k, &s);
if (x%k||!minm[root[k]]||minm[root[k]]+x>s) puts("-1"); //注意可能没有一个数
else printf("%d\n", query(root[k], x, s-x, 18)); //保证一定有解
}
}
return 0;
}
CF 979D Kuro and GCD and XOR and SUM(异或 Trie)的更多相关文章
- Codeforces 979 D. Kuro and GCD and XOR and SUM(异或和,01字典树)
Codeforces 979 D. Kuro and GCD and XOR and SUM 题目大意:有两种操作:①给一个数v,加入数组a中②给出三个数x,k,s:从当前数组a中找出一个数u满足 u ...
- codeforces 979D Kuro and GCD and XOR and SUM
题意: 给出两种操作: 1.添加一个数字x到数组. 2.给出s,x,k,从数组中找出一个数v满足gcd(x,k) % v == 0 && x + v <= s && ...
- CodeForces 979 D Kuro and GCD and XOR and SUM
Kuro and GCD and XOR and SUM 题意:给你一个空数组. 然后有2个操作, 1是往这个数组里面插入某个值, 2.给你一个x, k, s.要求在数组中找到一个v,使得k|gcd( ...
- D. Kuro and GCD and XOR and SUM
Kuro is currently playing an educational game about numbers. The game focuses on the greatest common ...
- CodeForces979D:Kuro and GCD and XOR and SUM(Trie树&指针&Xor)
Kuro is currently playing an educational game about numbers. The game focuses on the greatest common ...
- cf round 482D Kuro and GCD and XOR and SUM
题意: 开始有个空集合,现在有两种操作: $(1,x)$:给集合加一个数$x$,$x \leq 10^5$; $(2,x,k,s)$:在集合中找一个$a$,满足$a \leq s-x$,而且$k|gc ...
- Codeforces Round #482 (Div. 2) : Kuro and GCD and XOR and SUM (寻找最大异或值)
题目链接:http://codeforces.com/contest/979/problem/D 参考大神博客:https://www.cnblogs.com/kickit/p/9046953.htm ...
- cf979d Kuro and GCD and XOR and SUM
set做法 正解是trie-- 主要是要学会 \(a\ \mathrm{xor}\ b \leq a+b\) 这种操作 #include <iostream> #include <c ...
- 【Trie】【枚举约数】Codeforces Round #482 (Div. 2) D. Kuro and GCD and XOR and SUM
题意: 给你一个空的可重集,支持以下操作: 向其中塞进一个数x(不超过100000), 询问(x,K,s):如果K不能整除x,直接输出-1.否则,问你可重集中所有是K的倍数的数之中,小于等于s-x,并 ...
随机推荐
- php版微信公众平台开发之验证步骤实例详解
本文实例讲述了php版微信公众平台开发之验证步骤.分享给大家供大家参考,具体如下: 微信公众平台开发我们现在做得比较多了,这里给各位介绍的是一个入门级别的微信公众平台验证基础知识了,有兴趣的和小编来看 ...
- 关于c++中局部变量和全局变量的存储位置及内存回收机制
局部变量,参数变量存放在栈中,当离开作用范围后,分配的内存在作用范围外会被系统自动回收. new出来的内存空间存放在堆中,不受作用域管理,不会被系统自动回收,只有在使用delete删除或者整个程序结束 ...
- codeforces 653B B. Bear and Compressing(dfs)
题目链接: B. Bear and Compressing time limit per test 2 seconds memory limit per test 256 megabytes inpu ...
- Uva 10820 Send a Table(欧拉函数)
对每个n,答案就是(phi[2]+phi[3]+...+phi[n])*2+1,简单的欧拉函数应用. #include<iostream> #include<cstdio> # ...
- Convolutional Neural Networks for Visual Recognition 3
Gradient Computing 前面我们介绍过分类器模型一般包含两大部分,一部分是score function,将输入的原始数据映射到每一类的score,另外一个重要组成部分是loss func ...
- CH#56C 异象石 和 BZOJ3991 [SDOI2015]寻宝游戏
异象石 CH Round #56 - 国庆节欢乐赛 描述 Adera是Microsoft应用商店中的一款解谜游戏. 异象石是进入Adera中异时空的引导物,在Adera的异时空中有一张地图.这张地图上 ...
- ACM学习历程—HDU 5023 A Corrupt Mayor's Performance Art(广州赛区网赛)(线段树)
Problem Description Corrupt governors always find ways to get dirty money. Paint something, then sel ...
- Operating System-Thread(5)弹出式线程&&使单线程代码多线程化会产生那些问题
本文主要内容 弹出式线程(Pop-up threads) 使单线程代码多线程化会产生那些问题 一.弹出式线程(Pop-up threads) 以在一个http到达之后一个Service的处理为例子来介 ...
- 51nod 1967 路径定向——欧拉回路
题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1967 一共只会有偶数个奇数度的点.因为每多一条边,总度数加2. 把 ...
- bzoj 1257 余数之和 —— 数论分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 \( \sum\limits_{i=1}^{n}k\%i = \sum\limits_ ...