题面就是让你解同余方程组(模数不互质)


题解:

先考虑一下两个方程

x=r1 mod(m1)

x=r2 mod (m2)

去掉mod

x=r1+m1y1   ......1

x=r2+m2y2   ......2

1-2可以得到

m1y1-m2y2=r1-r2

形同ax+by=c形式,可以判无解或者解出一个y1的值

带回1式可得到一个x的解x0=r1-y1a1

通解为x=x0+k*lcm(m1,m2)

即x=x0 mod(lcm(m1,m2))

令M=lcm(m1,m2) R=x0

所以x满足x=R mod(M)

就变成了一个新的式子

可以合并到最后啦

 #include<cstdio>
#include<algorithm>
#include<cstring>
#define N 100010
typedef long long ll;
using namespace std;
ll n,m[N],r[N];
ll exGcd(ll a,ll b,ll &x,ll &y)
{
if (b==) return x=,y=,a;
ll r=exGcd(b,a%b,y,x);
y-=a/b*x;
return r;
}
ll solve()
{
ll M=m[],R=r[],x,y,d;
for (int i=;i<=n;i++)
{
d=exGcd(M,m[i],x,y);
if ((R-r[i])%d!=) return -;
x=(R-r[i])/d*x%m[i];
R-=x*M;
M=M/d*m[i];
R%=M;
}
return (R%M+M)%M;
}
int main()
{
while (scanf("%lld",&n)!=EOF)
{
for (int i=;i<=n;i++)
scanf("%lld%lld",&m[i],&r[i]);
printf("%lld\n",solve());
}
return ;
}

POJ 2891 Strange Way to Express Integers | exGcd解同余方程组的更多相关文章

  1. POJ 2891 Strange Way to Express Integers (解一元线性方程组)

    求解一元线性同余方程组: x=ri(mod ai) i=1,2,...,k 解一元线性同余方程组的一般步骤:先求出前两个的解,即:x=r1(mod a1)     1x=r2(mod a2)     ...

  2. poj——2891 Strange Way to Express Integers

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 16839 ...

  3. poj 2891 Strange Way to Express Integers (非互质的中国剩余定理)

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 9472   ...

  4. [POJ 2891] Strange Way to Express Integers

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 10907 ...

  5. POJ 2891 Strange Way to Express Integers(拓展欧几里得)

    Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express ...

  6. [poj 2891] Strange Way to Express Integers 解题报告(excrt扩展中国剩余定理)

    题目链接:http://poj.org/problem?id=2891 题目大意: 求解同余方程组,不保证模数互质 题解: 扩展中国剩余定理板子题 #include<algorithm> ...

  7. poj2891 Strange Way to Express Integers poj1006 Biorhythms 同余方程组

    怎样求同余方程组?如: \[\begin{cases} x \equiv a_1 \pmod {m_1} \\ x \equiv a_2 \pmod {m_2} \\ \cdots \\ x \equ ...

  8. POJ 2891 Strange Way to Express Integers 中国剩余定理 数论 exgcd

    http://poj.org/problem?id=2891 题意就是孙子算经里那个定理的基础描述不过换了数字和约束条件的个数…… https://blog.csdn.net/HownoneHe/ar ...

  9. POJ 2891 Strange Way to Express Integers 中国剩余定理MOD不互质数字方法

    http://poj.org/problem?id=2891 711323 97935537 475421538 1090116118 2032082 120922929 951016541 1589 ...

随机推荐

  1. 【期望dp 质因数分解】cf1139D. Steps to One

    有一种组合方向的考虑有没有dalao肯高抬啊? 题目大意 有一个初始为空的数组$a$,按照以下的流程进行操作: 在$1\cdots m$中等概率选出一个数$x$并添加到$a$的末尾 如果$a$中所有元 ...

  2. Servlet学习笔记04——什么是重定向,servlet生命周期?

    1.重定向 (1)什么是重定向? 服务器通知浏览器访问一个新的地址. 注: 服务器可以通过发送一个302状态码及一个 Location消息头(该消息头的值是一个地址,一般 称之为重定向地址)给浏览器, ...

  3. Linux Kernel ---- PCI Driver 分析

    自己笔记使用. Kernel 版本 4.15.0 (ubuntu 18.04,intel skylake) 最近想学习VGA驱动去了解 DDCCP / EDID 等协议,然后顺便了解下驱动是如何工作的 ...

  4. (servlet页面跳转没有反应)

    问题:页面跳转到/UserManager/LoginCLServlet,就一直没有反应,无法继续执行下去(servlet页面跳转没有反应) 解决: doPost()方法里面必须写成这样 正确的写法:  ...

  5. python获取Excel数据

    Python中一般使用xlrd(excel read)来读取Excel文件,使用xlwt(excel write)来生成Excel文件(可以控制Excel中单元格的格式),需要注意的是,用xlrd读取 ...

  6. decltype和新的返回值语法

    新的返回值语法 让我们讲一下新的返回值语法,这个语法还能看到auto的另一个用处.在以前版本的C和C++中,返回值的类型必须写在函数的前面: int multiply(int x, int y) 在C ...

  7. 各种Nand的总结

    1. 微观 NAND闪存NAND是非易失性存储技术,NAND闪存由多个存放以位(bit)为单位的单元构成,这些位通过电荷被打开或关闭,如何组织这些开关单元来储存在SSD上的数据,也决定了NAND闪存的 ...

  8. C语言进阶—— 逻辑运算符分析15

    印象中的逻辑运算符: ---学生:老师,在我的印象中,逻辑运算符用在条件判断的时候,真挺简单的,还有必要深究吗? ---老师:逻辑运算符确实在条件判断的时候用的比较多,但是并不能说简单... 请思考下 ...

  9. Jenkins拾遗--第五篇-git插件填坑

    Jenkins使用过程中,大部分Job的第一项就行从源码库里签出代码.由于git越来越流行,所以,稍微新一些的项目的源码管理都是基于git的.对应的,jenkins的git plugin几乎是大部分j ...

  10. USACO Section1.2 Name That Number 解题报告

    namenum解题报告 —— icedream61 博客园(转载请注明出处)-------------------------------------------------------------- ...