题目

windy有 N 条木板需要被粉刷。 每条木板被分为 M 个格子。 每个格子要被刷成红色或蓝色。 windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色。 每个格子最多只能被粉刷一次。 如果windy只能粉刷 T 次,他最多能正确粉刷多少格子? 一个格子如果未被粉刷或者被粉刷错颜色,就算错误粉刷。

输入格式

输入文件paint.in第一行包含三个整数,N M T。 接下来有N行,每行一个长度为M的字符串,’0’表示红色,’1’表示蓝色。

输出格式

输出文件paint.out包含一个整数,最多能正确粉刷的格子数。

输入样例

3 6 3

111111

000000

001100

输出样例

16

提示

30%的数据,满足 1 <= N,M <= 10 ; 0 <= T <= 100 。 100%的数据,满足 1 <= N,M <= 50 ; 0 <= T <= 2500 。

题解

将每一行做一次O(M3)动归,求出每行刷k次下做多的收益

设f[i][j]表示当前行前i个刷j次的最大收益

f[i][j]=max(f[k][j−1]+max(sum1(k,j),sum0(k,j)))

得出了每行刷1、2、3……K次的收益,总共可以刷T次,就可以做一个分组背包

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k != -1; k = ed[k].nxt)
using namespace std;
const int maxn = 60,maxm = 2505,INF = 1000000000;
int f[maxn][maxm],g[maxn][maxn],N,M,T,sum[maxn];
char s[maxn];
int main(){
scanf("%d%d%d",&N,&M,&T);
for (int i = 1; i <= N; i++){
scanf("%s",s + 1);
for (int j = 1; j <= M; j++) sum[j] = sum[j - 1] + (s[j] == '1');
for (int k = 1; k <= M; k++)
for (int j = 1; j <= M; j++){
g[j][k] = 0;
for (int l = 0; l < j; l++)
g[j][k] = max(g[j][k],g[l][k - 1] + max(sum[j] - sum[l],j - l - (sum[j] - sum[l])));
}
for (int j = 1; j <= T; j++)
for (int k = 1,t = min(j,M); k <= t; k++)
f[i][j] = max(f[i][j],f[i - 1][j - k] + g[M][k]);
}
int ans = 0;
REP(i,T) ans = max(ans,f[N][i]);
printf("%d",ans);
return 0;
}

BZOJ1296 [SCOI2009]粉刷匠 【dp】的更多相关文章

  1. [Bzoj1296][Scoi2009] 粉刷匠 [DP + 分组背包]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2184  Solved: 1259[Submit][Statu ...

  2. BZOJ1296: [SCOI2009]粉刷匠 DP

    Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...

  3. bzoj1296: [SCOI2009]粉刷匠(DP)

    1296: [SCOI2009]粉刷匠 题目:传送门 题解: DP新姿势:dp套dp 我们先单独处理每个串,然后再放到全局更新: f[i][k]表示当前串枚举到第i个位置,用了k次机会 F[i][j] ...

  4. BZOJ 1296: [SCOI2009]粉刷匠( dp )

    dp[ i ][ j ] = max( dp[ i - 1 ][ k ] + w[ i ][ j - k ] )  ( 0 <= k <= j ) 表示前 i 行用了 j 次粉刷的机会能正 ...

  5. Luogu P4158 [SCOI2009]粉刷匠(dp+背包)

    P4158 [SCOI2009]粉刷匠 题意 题目描述 \(windy\)有\(N\)条木板需要被粉刷.每条木板被分为\(M\)个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能 ...

  6. 【Dp】Bzoj1296 [SCOI2009] 粉刷匠

    Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...

  7. 2018.09.02 bzoj1296: [SCOI2009]粉刷匠(dp套dp)

    传送门 dp好题. 先推出对于每一行花费k次能最多粉刷的格子数. 然后再推前i行花费k次能最多粉刷的格子数. 代码: #include<bits/stdc++.h> #define N 5 ...

  8. BZOJ1296 [SCOI2009]粉刷匠 动态规划 分组背包

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1296 题意概括 有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝 ...

  9. bzoj1296: [SCOI2009]粉刷匠

    dp. 用到俩次dp,用1和0代表俩种颜色,首先对于每块木板我们进行一次dp,g[i][j]代表前j个格子刷i次最多能涂到几个格子. 则 g[i][j]=max(g[i-1][k],max(cnt[j ...

随机推荐

  1. BZOJ4198: [Noi2015]荷马史诗(哈夫曼树)

    Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1824  Solved: 983[Submit][Status][Discuss] Descripti ...

  2. SAP BI 常用TCODE

    S.No Tcode Description 1 RSA1 Administrator Work Bench 2 RSA11 Calling up AWB with the IC tree 3 RSA ...

  3. spring-bean(xml方式DI)

    三种属性注入方式 构造函数注入 1.在Bean实体中写入构造函数(带参构造) 2. <bean id=”该bean的名称” class=”注入的bean的全路径”> <constru ...

  4. 493. Reverse Pairs

    // see more at https://www.youtube.com/watch?v=j68OXAMlTM4 // https://leetcode.com/problems/reverse- ...

  5. 解答室内定位技术新方向:蓝牙AoA定位,值得了解 ——概念了解

    转载搜狐 室内定位一直被炒的非常火的黑科技,也是近年资本追逐的热点,市场上一直有众多宣称可以做到厘米级,米级精度定位的公司,但问题很多,无法大规模商用.近些年有很多人尝试使用蓝牙beacon方式做定位 ...

  6. C语言数组篇(四)二维数组

      二维数组声明: ][] ={{,,},{,,}; //两行 三列         二维数组在声明的时候可以不写行,但一定要写列 ] = {{,},{,,},{}}; //未声明的地方自动补零 二维 ...

  7. 15.9,python操作redis集群

      上代码 .对redis的单实例进行连接操作 python3 >>>import redis >>>r = redis.StrictRedis(host=, db ...

  8. laravel5.5任务调度

    目录 1. 定义调度 1.1 使用Closure 1.2 Artisan 命令调度 1.3 队列任务调度 1.4 Shell 命令调度 1.5 调度频率设置 1.6 闭包测试限制 1.7 避免任务重复 ...

  9. Java学习笔记23---内部类之局部内部类只能访问final的局部变量

    局部内部类是定义在方法体或代码块中的类,在笔记19中已有过简单介绍. 今天要讨论的是局部内部类为什么只能访问为常量的局部变量. 作者: 博客园--蝉蝉 请尊重作者劳动成果,转载请在标题注明“转载”字样 ...

  10. Android学习记录(8)—Activity的四种加载模式及有关Activity横竖屏切换的问题

    Activity有四种加载模式:standard(默认), singleTop, singleTask和 singleInstance.以下逐一举例说明他们的区别: standard:Activity ...