C++ 智能指针详解

 

一、简介

由于 C++ 语言没有自动内存回收机制,程序员每次 new 出来的内存都要手动 delete。程序员忘记 delete,流程太复杂,最终导致没有 delete,异常导致程序过早退出,没有执行 delete 的情况并不罕见。

用智能指针便可以有效缓解这类问题,本文主要讲解参见的智能指针的用法。包括:std::auto_ptr、boost::scoped_ptr、boost::shared_ptr、boost::scoped_array、boost::shared_array、boost::weak_ptr、boost::intrusive_ptr你可能会想,如此多的智能指针就为了解决new、delete匹配问题,真的有必要吗?看完这篇文章后,我想你心里自然会有答案。

下面就按照顺序讲解如上 7 种智能指针(smart_ptr)。

二、具体使用

1、总括

对于编译器来说,智能指针实际上是一个栈对象,并非指针类型,在栈对象生命期即将结束时,智能指针通过析构函数释放有它管理的堆内存。所有智能指针都重载了“operator->”操作符,直接返回对象的引用,用以操作对象。访问智能指针原来的方法则使用“.”操作符。

访问智能指针包含的裸指针则可以用 get() 函数。由于智能指针是一个对象,所以if (my_smart_object)永远为真,要判断智能指针的裸指针是否为空,需要这样判断:if (my_smart_object.get())。

智能指针包含了 reset() 方法,如果不传递参数(或者传递 NULL),则智能指针会释放当前管理的内存。如果传递一个对象,则智能指针会释放当前对象,来管理新传入的对象。

我们编写一个测试类来辅助分析:

  1. class Simple {
  2.  
  3. public:
  4.  
  5. Simple(int param = ) {
  6.  
  7. number = param;
  8.  
  9. std::cout << "Simple: " << number << std::endl;
  10.  
  11. }
  12.  
  13. ~Simple() {
  14.  
  15. std::cout << "~Simple: " << number << std::endl;
  16.  
  17. }
  18.  
  19. void PrintSomething() {
  20.  
  21. std::cout << "PrintSomething: " << info_extend.c_str() << std::endl;
  22.  
  23. }
  24.  
  25. std::string info_extend;
  26.  
  27. int number;
  28.  
  29. };

 

2、std::auto_ptr

std::auto_ptr 属于 STL,当然在 namespace std 中,包含头文件 #include<memory> 便可以使用。std::auto_ptr 能够方便的管理单个堆内存对象。

我们从代码开始分析:

  1. void TestAutoPtr() {
  2. std::auto_ptr<Simple> my_memory(new Simple()); // 创建对象,输出:Simple:1
  3. if (my_memory.get()) { // 判断智能指针是否为空
  4. my_memory->PrintSomething(); // 使用 operator-> 调用智能指针对象中的函数
  5. my_memory.get()->info_extend = "Addition"; // 使用 get() 返回裸指针,然后给内部对象赋值
  6. my_memory->PrintSomething(); // 再次打印,表明上述赋值成功
  7. (*my_memory).info_extend += " other"; // 使用 operator* 返回智能指针内部对象,然后用“.”调用智能指针对象中的函数
  8. my_memory->PrintSomething(); // 再次打印,表明上述赋值成功
  9. }
  10. } // my_memory 栈对象即将结束生命期,析构堆对象 Simple(1)

执行结果为:

  1. Simple:
  2.  
  3. PrintSomething:
  4.  
  5. PrintSomething: Addition
  6.  
  7. PrintSomething: Addition other
  8.  
  9. ~Simple:

上述为正常使用 std::auto_ptr 的代码,一切似乎都良好,无论如何不用我们显示使用该死的 delete 了。

其实好景不长,我们看看如下的另一个例子:

  1. void TestAutoPtr2() {
  2.  
  3. std::auto_ptr<Simple> my_memory(new Simple());
  4.  
  5. if (my_memory.get()) {
  6.  
  7. std::auto_ptr<Simple> my_memory2; // 创建一个新的 my_memory2 对象
  8.  
  9. my_memory2 = my_memory; // 复制旧的 my_memory 给 my_memory2
  10.  
  11. my_memory2->PrintSomething(); // 输出信息,复制成功
  12.  
  13. my_memory->PrintSomething(); // 崩溃
  14.  
  15. }
  16.  
  17. }

最终如上代码导致崩溃,如上代码时绝对符合 C++ 编程思想的,居然崩溃了,跟进 std::auto_ptr 的源码后,我们看到,罪魁祸首是“my_memory2 = my_memory”,这行代码,my_memory2 完全夺取了 my_memory 的内存管理所有权,导致 my_memory 悬空,最后使用时导致崩溃。

所以,使用 std::auto_ptr 时,绝对不能使用“operator=”操作符。作为一个库,不允许用户使用,确没有明确拒绝[1],多少会觉得有点出乎预料。

看完 std::auto_ptr 好景不长的第一个例子后,让我们再来看一个:

  1. void TestAutoPtr3() {
  2.  
  3. std::auto_ptr<Simple> my_memory(new Simple());
  4.  
  5. if (my_memory.get()) {
  6.  
  7. my_memory.release();
  8.  
  9. }
  10.  
  11. }

执行结果为:

Simple: 1

看到什么异常了吗?我们创建出来的对象没有被析构,没有输出“~Simple: 1”,导致内存泄露。当我们不想让 my_memory 继续生存下去,我们调用 release() 函数释放内存,结果却导致内存泄露(在内存受限系统中,如果my_memory占用太多内存,我们会考虑在使用完成后,立刻归还,而不是等到 my_memory 结束生命期后才归还)。

正确的代码应该为:

  1. void TestAutoPtr3() {
  2.  
  3. std::auto_ptr<Simple> my_memory(new Simple());
  4.  
  5. if (my_memory.get()) {
  6.  
  7. Simple* temp_memory = my_memory.release();
  8.  
  9. delete temp_memory;
  10.  
  11. }
  12.  
  13. }

  1. void TestAutoPtr3() {
  2.  
  3. std::auto_ptr<Simple> my_memory(new Simple());
  4.  
  5. if (my_memory.get()) {
  6.  
  7. my_memory.reset(); // 释放 my_memory 内部管理的内存
  8.  
  9. }
  10.  
  11. }

原来 std::auto_ptr 的 release() 函数只是让出内存所有权,这显然也不符合 C++ 编程思想。

总结:std::auto_ptr 可用来管理单个对象的对内存,但是,请注意如下几点:

(1)    尽量不要使用“operator=”。如果使用了,请不要再使用先前对象。

(2)    记住 release() 函数不会释放对象,仅仅归还所有权。

(3)    std::auto_ptr 最好不要当成参数传递(读者可以自行写代码确定为什么不能)。

(4)    由于 std::auto_ptr 的“operator=”问题,有其管理的对象不能放入 std::vector 等容器中。

(5)    ……

使用一个 std::auto_ptr 的限制还真多,还不能用来管理堆内存数组,这应该是你目前在想的事情吧,我也觉得限制挺多的,哪天一个不小心,就导致问题了。

由于 std::auto_ptr 引发了诸多问题,一些设计并不是非常符合 C++ 编程思想,所以引发了下面 boost 的智能指针,boost 智能指针可以解决如上问题。

让我们继续向下看。

3、boost::scoped_ptr

boost::scoped_ptr 属于 boost 库,定义在 namespace boost 中,包含头文件 #include<boost/smart_ptr.hpp> 便可以使用。boost::scoped_ptr 跟 std::auto_ptr 一样,可以方便的管理单个堆内存对象,特别的是,boost::scoped_ptr 独享所有权,避免了 std::auto_ptr 恼人的几个问题。

我们还是从代码开始分析:

  1. void TestScopedPtr() {
  2.  
  3. boost::scoped_ptr<Simple> my_memory(new Simple());
  4.  
  5. if (my_memory.get()) {
  6.  
  7. my_memory->PrintSomething();
  8.  
  9. my_memory.get()->info_extend = "Addition";
  10.  
  11. my_memory->PrintSomething();
  12.  
  13. (*my_memory).info_extend += " other";
  14.  
  15. my_memory->PrintSomething();
  16.  
  17. my_memory.release(); // 编译 error: scoped_ptr 没有 release 函数
  18.  
  19. std::auto_ptr<Simple> my_memory2;
  20.  
  21. my_memory2 = my_memory; // 编译 error: scoped_ptr 没有重载 operator=,不会导致所有权转移
  22.  
  23. }
  24.  
  25. }

首先,我们可以看到,boost::scoped_ptr 也可以像 auto_ptr 一样正常使用。但其没有 release() 函数,不会导致先前的内存泄露问题。其次,由于 boost::scoped_ptr 是独享所有权的,所以明确拒绝用户写“my_memory2 = my_memory”之类的语句,可以缓解 std::auto_ptr 几个恼人的问题。

由于 boost::scoped_ptr 独享所有权,当我们真真需要复制智能指针时,需求便满足不了了,如此我们再引入一个智能指针,专门用于处理复制,参数传递的情况,这便是如下的 boost::shared_ptr。

4、boost::shared_ptr

boost::shared_ptr 属于 boost 库,定义在 namespace boost 中,包含头文件 #include<boost/smart_ptr.hpp> 便可以使用。在上面我们看到 boost::scoped_ptr 独享所有权,不允许赋值、拷贝,boost::shared_ptr 是专门用于共享所有权的,由于要共享所有权,其在内部使用了引用计数。boost::shared_ptr 也是用于管理单个堆内存对象的。

我们还是从代码开始分析:

  1. void TestSharedPtr(boost::shared_ptr<Simple> memory) { // 注意:无需使用 reference (或 const reference)
  2.  
  3. memory->PrintSomething();
  4.  
  5. std::cout << "TestSharedPtr UseCount: " << memory.use_count() << std::endl;
  6.  
  7. }
  8.  
  9. void TestSharedPtr2() {
  10.  
  11. boost::shared_ptr<Simple> my_memory(new Simple());
  12.  
  13. if (my_memory.get()) {
  14.  
  15. my_memory->PrintSomething();
  16.  
  17. my_memory.get()->info_extend = "Addition";
  18.  
  19. my_memory->PrintSomething();
  20.  
  21. (*my_memory).info_extend += " other";
  22.  
  23. my_memory->PrintSomething();
  24.  
  25. }
  26.  
  27. std::cout << "TestSharedPtr2 UseCount: " << my_memory.use_count() << std::endl;
  28.  
  29. TestSharedPtr(my_memory);
  30.  
  31. std::cout << "TestSharedPtr2 UseCount: " << my_memory.use_count() << std::endl;
  32.  
  33. //my_memory.release();// 编译 error: 同样,shared_ptr 也没有 release 函数
  34.  
  35. }

执行结果为:

  1. Simple:
  2.  
  3. PrintSomething:
  4.  
  5. PrintSomething: Addition
  6.  
  7. PrintSomething: Addition other
  8.  
  9. TestSharedPtr2 UseCount:
  10.  
  11. PrintSomething: Addition other
  12.  
  13. TestSharedPtr UseCount:
  14.  
  15. TestSharedPtr2 UseCount:
  16.  
  17. ~Simple:

boost::shared_ptr 也可以很方便的使用。并且没有 release() 函数。关键的一点,boost::shared_ptr 内部维护了一个引用计数,由此可以支持复制、参数传递等。boost::shared_ptr 提供了一个函数 use_count() ,此函数返回 boost::shared_ptr 内部的引用计数。查看执行结果,我们可以看到在 TestSharedPtr2 函数中,引用计数为 1,传递参数后(此处进行了一次复制),在函数TestSharedPtr 内部,引用计数为2,在 TestSharedPtr 返回后,引用计数又降低为 1。当我们需要使用一个共享对象的时候,boost::shared_ptr 是再好不过的了。

在此,我们已经看完单个对象的智能指针管理,关于智能指针管理数组,我们接下来讲到。

5、boost::scoped_array

boost::scoped_array 属于 boost 库,定义在 namespace boost 中,包含头文件 #include<boost/smart_ptr.hpp> 便可以使用。

boost::scoped_array 便是用于管理动态数组的。跟 boost::scoped_ptr 一样,也是独享所有权的。

我们还是从代码开始分析:

  1. void TestScopedArray() {
  2.  
  3. boost::scoped_array<Simple> my_memory(new Simple[]); // 使用内存数组来初始化
  4.  
  5. if (my_memory.get()) {
  6.  
  7. my_memory[].PrintSomething();
  8.  
  9. my_memory.get()[].info_extend = "Addition";
  10.  
  11. my_memory[].PrintSomething();
  12.  
  13. (*my_memory)[].info_extend += " other"; // 编译 error,scoped_ptr 没有重载 operator*
  14.  
  15. my_memory[].release(); // 同上,没有 release 函数
  16.  
  17. boost::scoped_array<Simple> my_memory2;
  18.  
  19. my_memory2 = my_memory; // 编译 error,同上,没有重载 operator=
  20.  
  21. }
  22.  
  23. }

boost::scoped_array 的使用跟 boost::scoped_ptr 差不多,不支持复制,并且初始化的时候需要使用动态数组。另外,boost::scoped_array 没有重载“operator*”,其实这并无大碍,一般情况下,我们使用 get() 函数更明确些。

下面肯定应该讲 boost::shared_array 了,一个用引用计数解决复制、参数传递的智能指针类。

6、boost::shared_array

boost::shared_array 属于 boost 库,定义在 namespace boost 中,包含头文件 #include<boost/smart_ptr.hpp> 便可以使用。

由于 boost::scoped_array 独享所有权,显然在很多情况下(参数传递、对象赋值等)不满足需求,由此我们引入 boost::shared_array。跟 boost::shared_ptr 一样,内部使用了引用计数。

我们还是从代码开始分析:

  1. void TestSharedArray(boost::shared_array<Simple> memory) { // 注意:无需使用 reference (或 const reference)
  2.  
  3. std::cout << "TestSharedArray UseCount: " << memory.use_count() << std::endl;
  4.  
  5. }
  6.  
  7. void TestSharedArray2() {
  8.  
  9. boost::shared_array<Simple> my_memory(new Simple[]);
  10.  
  11. if (my_memory.get()) {
  12.  
  13. my_memory[].PrintSomething();
  14.  
  15. my_memory.get()[].info_extend = "Addition 00";
  16.  
  17. my_memory[].PrintSomething();
  18.  
  19. my_memory[].PrintSomething();
  20.  
  21. my_memory.get()[].info_extend = "Addition 11";
  22.  
  23. my_memory[].PrintSomething();
  24.  
  25. //(*my_memory)[0].info_extend += " other"; // 编译 error,scoped_ptr 没有重载 operator*
  26.  
  27. }
  28.  
  29. std::cout << "TestSharedArray2 UseCount: " << my_memory.use_count() << std::endl;
  30.  
  31. TestSharedArray(my_memory);
  32.  
  33. std::cout << "TestSharedArray2 UseCount: " << my_memory.use_count() << std::endl;
  34.  
  35. }

执行结果为:

  1. Simple:
  2.  
  3. Simple:
  4.  
  5. PrintSomething:
  6.  
  7. PrintSomething: Addition
  8.  
  9. PrintSomething:
  10.  
  11. PrintSomething: Addition
  12.  
  13. TestSharedArray2 UseCount:
  14.  
  15. TestSharedArray UseCount:
  16.  
  17. TestSharedArray2 UseCount:
  18.  
  19. ~Simple:
  20.  
  21. ~Simple:

跟 boost::shared_ptr 一样,使用了引用计数,可以复制,通过参数来传递。

至此,我们讲过的智能指针有 std::auto_ptr、boost::scoped_ptr、boost::shared_ptr、boost::scoped_array、boost::shared_array。这几个智能指针已经基本够我们使用了,90% 的使用过标准智能指针的代码就这 5 种。可如下还有两种智能指针,它们肯定有用,但有什么用处呢,一起看看吧。

7、boost::weak_ptr

boost::weak_ptr 属于 boost 库,定义在 namespace boost 中,包含头文件 #include<boost/smart_ptr.hpp> 便可以使用。

在讲 boost::weak_ptr 之前,让我们先回顾一下前面讲解的内容。似乎 boost::scoped_ptr、boost::shared_ptr 这两个智能指针就可以解决所有单个对象内存的管理了,这儿还多出一个 boost::weak_ptr,是否还有某些情况我们没纳入考虑呢?

回答:有。首先 boost::weak_ptr 是专门为 boost::shared_ptr 而准备的。有时候,我们只关心能否使用对象,并不关心内部的引用计数。boost::weak_ptr 是 boost::shared_ptr 的观察者(Observer)对象,观察者意味着 boost::weak_ptr 只对 boost::shared_ptr 进行引用,而不改变其引用计数,当被观察的 boost::shared_ptr 失效后,相应的 boost::weak_ptr 也相应失效。

我们还是从代码开始分析:

  1. void TestWeakPtr() {
  2.  
  3. boost::weak_ptr<Simple> my_memory_weak;
  4.  
  5. boost::shared_ptr<Simple> my_memory(new Simple());
  6.  
  7. std::cout << "TestWeakPtr boost::shared_ptr UseCount: " << my_memory.use_count() << std::endl;
  8.  
  9. my_memory_weak = my_memory;
  10.  
  11. std::cout << "TestWeakPtr boost::shared_ptr UseCount: " << my_memory.use_count() << std::endl;
  12.  
  13. }

执行结果为:

  1. Simple:
  2.  
  3. TestWeakPtr boost::shared_ptr UseCount:
  4.  
  5. TestWeakPtr boost::shared_ptr UseCount:
  6.  
  7. ~Simple:

我们看到,尽管被赋值了,内部的引用计数并没有什么变化,当然,读者也可以试试传递参数等其他情况。

现在要说的问题是,boost::weak_ptr 到底有什么作用呢?从上面那个例子看来,似乎没有任何作用,其实 boost::weak_ptr 主要用在软件架构设计中,可以在基类(此处的基类并非抽象基类,而是指继承于抽象基类的虚基类)中定义一个 boost::weak_ptr,用于指向子类的 boost::shared_ptr,这样基类仅仅观察自己的 boost::weak_ptr 是否为空就知道子类有没对自己赋值了,而不用影响子类 boost::shared_ptr 的引用计数,用以降低复杂度,更好的管理对象。

    8、boost::intrusive_ptr

boost::intrusive_ptr属于 boost 库,定义在 namespace boost 中,包含头文件 #include<boost/smart_ptr.hpp> 便可以使用。

讲完如上 6 种智能指针后,对于一般程序来说 C++ 堆内存管理就够用了,现在有多了一种 boost::intrusive_ptr,这是一种插入式的智能指针,内部不含有引用计数,需要程序员自己加入引用计数,不然编译不过(⊙﹏⊙b汗)。个人感觉这个智能指针没太大用处,至少我没用过。有兴趣的朋友自己研究一下源代码哦J。

三、总结

如上讲了这么多智能指针,有必要对这些智能指针做个总结:

1、在可以使用 boost 库的场合下,拒绝使用 std::auto_ptr,因为其不仅不符合 C++ 编程思想,而且极容易出错[2]。

2、在确定对象无需共享的情况下,使用 boost::scoped_ptr(当然动态数组使用 boost::scoped_array)。

3、在对象需要共享的情况下,使用 boost::shared_ptr(当然动态数组使用 boost::shared_array)。

4、在需要访问 boost::shared_ptr 对象,而又不想改变其引用计数的情况下,使用 boost::weak_ptr,一般常用于软件框架设计中。

5、最后一点,也是要求最苛刻一点:在你的代码中,不要出现 delete 关键字(或 C 语言的 free 函数),因为可以用智能指针去管理。

---------------------------------------

[1]参见《effective C++(3rd)》,条款06 。

[2]关于 boost 库的使用,可本博客另外一篇文章:《在 Windows 中编译 boost1.42.0》。

[3]读者应该看到了,在我所有的名字前,都加了命名空间标识符std::(或boost::),这不是我不想写 using namespace XXX 之类的语句,在大型项目中,有可能会用到 N 个第三方库,如果把命名空间全放出来,命名污染(Naming conflicts)问题很难避免,到时要改回来是极端麻烦的事情。当然,如果你只是写 Demo,可以例外。

转自:http://blog.csdn.net/xt_xiaotian/article/details/5714477

C++ 智能指针详解(转)的更多相关文章

  1. 【C++】智能指针详解(一):智能指针的引入

    智能指针是C++中一种利用RAII机制(后面解释),通过对象来管理指针的一种方式. 在C++中,动态开辟的内存需要我们自己去维护,在出函数作用域或程序异常退出之前,我们必须手动释放掉它,否则的话就会引 ...

  2. [转]C++ 智能指针详解

    转自:http://blog.csdn.net/xt_xiaotian/article/details/5714477 C++ 智能指针详解 一.简介 由于 C++ 语言没有自动内存回收机制,程序员每 ...

  3. [C++11新特性] 智能指针详解

    动态内存的使用很容易出问题,因为确保在正确的时间释放内存是极为困难的.有时我们会忘记释放内存产生内存泄漏,有时提前释放了内存,再使用指针去引用内存就会报错. 为了更容易(同时也更安全)地使用动态内存, ...

  4. 【C++】智能指针详解

    转自:https://blog.csdn.net/flowing_wind/article/details/81301001 参考资料:<C++ Primer中文版 第五版>我们知道除了静 ...

  5. C++智能指针详解

    本文出自http://mxdxm.iteye.com/ 一.简介 由于 C++ 语言没有自动内存回收机制,程序员每次 new 出来的内存都要手动 delete.程序员忘记 delete,流程太复杂,最 ...

  6. 【转】C++ 智能指针详解

    一.简介 由于 C++ 语言没有自动内存回收机制,程序员每次 new 出来的内存都要手动 delete.程序员忘记 delete,流程太复杂,最终导致没有 delete,异常导致程序过早退出,没有执行 ...

  7. 【C++】智能指针详解(二):auto_ptr

    首先,我要声明auto_ptr是一个坑!auto_ptr是一个坑!auto_ptr是一个坑!重要的事情说三遍!!! 通过上文,我们知道智能指针通过对象去管理指针,在构造对象时完成资源的分配及初始化,在 ...

  8. C++11 unique_ptr智能指针详解

    在<C++11 shared_ptr智能指针>的基础上,本节继续讲解 C++11 标准提供的另一种智能指针,即 unique_ptr 智能指针. 作为智能指针的一种,unique_ptr ...

  9. c/c++指针详解(一)

    一:相关概念 1.指针数组:int *p[6]               是数组,是一个存放指针的数组,也就是里面存放的是地址. 2.数组指针:int (*p)[6]                 ...

随机推荐

  1. 使用matlab判断男声与女声

    (转自) http://wenku.baidu.com/view/1d55480fbe1e650e52ea99a3.html %filename:manwoman.m %different man f ...

  2. 华为上机测试题(表达式运算-java)

    PS:自己写的,自测试OK,供大家参考. 补充:数据解析的过程,评论区有更好的处理方式,可参考. /* * 输入一个表达式,3*8+7-2,没有括号 输出结果 */ /* 本程序暂不考虑容错处理 */ ...

  3. [BZOJ4756][Usaco2017 Jan]Promotion Counting 树状数组

    4756: [Usaco2017 Jan]Promotion Counting Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 305  Solved: ...

  4. 允许root用户登录ssh

    使用普通用户登录Ubuntu系统,打开命令行窗口 更改root用户密码,命令:sudo passwd root 首先输入当前用户的密码 然后输入root账户的密码 确认root用户的密码 编辑ssh的 ...

  5. asp.net 网站模板怎么用,就是16aspx上面下下来的模板,里面有个sln文件,其他全是文件夹的东西

    .net写的程序模板一般都被写死了.那样只有通过程序改了.

  6. Java IO 学习(六)Java的Direct Memory与IO

    ByteBuffer的源码中有这样一段注释: A byte buffer is either direct or non-direct. Given a direct byte buffer, the ...

  7. JDBC二部曲之_事物、连接池

    事务 事务概述 事务的四大特性(ACID) 事务的四大特性是: l  原子性(Atomicity):事务中所有操作是不可再分割的原子单位.事务中所有操作要么全部执行成功,要么全部执行失败. l  一致 ...

  8. Python的网络编程[1] -> FTP 协议[0] -> FTP 的基本理论

    FTP协议 / FTP Protocol FTP全称为File Transfer Protocol(文件传输协议),常用于Internet上控制文件的双向传输,常用的操作有上传和下载.基于TCP/IP ...

  9. 树链剖分【P3833】 [SHOI2012]魔法树

    Description Harry Potter 新学了一种魔法:可以让改变树上的果子个数.满心欢喜的他找到了一个巨大的果树,来试验他的新法术. 这棵果树共有N个节点,其中节点0是根节点,每个节点u的 ...

  10. 浅谈JavaScript中的null和undefined

    浅谈JavaScript中的null和undefined null null是JavaScript中的关键字,表示一个特殊值,常用来描述"空值". 对null进行typeof类型运 ...