Antenna Placement

Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Description

The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobile phone nets in Sweden. The most striking reason why they got the job, is their discovery of a new, highly noise resistant, antenna. It is called 4DAir, and comes in four types. Each type can only transmit and receive signals in a direction aligned with a (slightly skewed) latitudinal and longitudinal grid, because of the interacting electromagnetic field of the earth. The four types correspond to antennas operating in the directions north, west, south, and east, respectively. Below is an example picture of places of interest, depicted by twelve small rings, and nine 4DAir antennas depicted by ellipses covering them. 

Obviously, it is desirable to use as few antennas as possible, but still provide coverage for each place of interest. We model the problem as follows: Let A be a rectangular matrix describing the surface of Sweden, where an entry of A either is a point of interest, which must be covered by at least one antenna, or empty space. Antennas can only be positioned at an entry in A. When an antenna is placed at row r and column c, this entry is considered covered, but also one of the neighbouring entries (c+1,r),(c,r+1),(c-1,r), or (c,r-1), is covered depending on the type chosen for this particular antenna. What is the least number of antennas for which there exists a placement in A such that all points of interest are covered?

Input

On the first row of input is a single positive integer n, specifying the number of scenarios that follow. Each scenario begins with a row containing two positive integers h and w, with 1 <= h <= 40 and 0 < w <= 10. Thereafter is a matrix presented, describing the points of interest in Sweden in the form of h lines, each containing w characters from the set ['*','o']. A '*'-character symbolises a point of interest, whereas a 'o'-character represents open space.

Output

For each scenario, output the minimum number of antennas necessary to cover all '*'-entries in the scenario's matrix, on a row of its own.

Sample Input

2
7 9
ooo**oooo
**oo*ooo*
o*oo**o**
ooooooooo
*******oo
o*o*oo*oo
*******oo
10 1
*
*
*
o
*
*
*
*
*
*

Sample Output

17
5 题目大意:用1*2的长条覆盖图中的“*”。问最少需要多少个长条。 解题思路:最小路径覆盖:选择最少的边,让每个顶点都被选中,单独的结点可以作为一条路径。建图思路都是奇偶性建图。但是不同的是,这个需要把所有“*”都覆盖。那么我们考虑最小路径覆盖。
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn = 660;
const int INF = 0x3f3f3f3f;
vector<int>G[maxn];
int Mx[maxn], My[maxn], dx[maxn], dy[maxn], used[maxn], dis;
char Map[maxn][maxn];
int lis[maxn][maxn];
bool SearchP(int _n){
queue<int>Q;
memset(dx,-1,sizeof(dx));
memset(dy,-1,sizeof(dy));
int dis = INF;
for(int i = 1; i <= _n; i++){
if(Mx[i] == -1){
dx[i] = 0;
Q.push(i);
}
}
int v;
while(!Q.empty()){
int u = Q.front(); Q.pop();
if(dx[u] > dis) break;
for(int i = 0; i < G[u].size(); i++){
v = G[u][i];
if(dy[v] == -1){
dy[v] = dx[u] + 1;
if(My[v] == -1){
dis = dy[v];
}else{
dx[My[v]] = dy[v] + 1;
Q.push(My[v]);
}
}
}
}
return dis != INF;
}
int dfs(int u){
int v;
for(int i = 0; i < G[u].size(); i++){
v = G[u][i];
if(!used[v] && dy[v] == dx[u] + 1){
used[v] = 1;
if(My[v] != -1 && dy[v] == dis){
continue;
}
if(My[v] == -1 || dfs(My[v])){
Mx[u] = v;
My[v] = u;
return true;
}
}
}
return false;
}
int MaxMatch(int ln,int rn){
int ret = 0;
memset(Mx,-1,sizeof(Mx));
memset(My,-1,sizeof(My));
while(SearchP(ln)){
memset(used,0,sizeof(used));
for(int i = 1; i <= ln; i++){
if(Mx[i] == -1 && dfs(i)){
ret++;
}
}
}
return ret;
}
int main(){
int T, cas = 0, n, m, N, M;
scanf("%d",&T);
while(T--){
n = m = 0;
scanf("%d%d",&N,&M);
for(int i = 0; i <= 210; i++){
G[i].clear();
}
for(int i = 0; i <= M+1; i++){
Map[N+1][i] = 'o';
Map[0][i] = 'o';
}
for(int i = 0; i <= N+1; i++){
Map[i][0] = 'o';
Map[i][M+1] = 'o';
}
for(int i = 1; i <= N; i++){
getchar();
for(int j = 1; j <= M; j++){
scanf("%c",&Map[i][j]);
if(Map[i][j] == '*'){
if((i+j)%2 == 0){
++n;
lis[i][j] = n;
if(Map[i-1][j] == '*'){
G[n].push_back(lis[i-1][j]);
}
if(Map[i][j-1] == '*'){
G[n].push_back(lis[i][j-1]);
}
}else{
++m;
lis[i][j] = m;
if(Map[i-1][j] == '*'){
G[lis[i-1][j]].push_back(m);
}
if(Map[i][j-1] == '*'){
G[lis[i][j-1]].push_back(m);
}
}
}
}
}
int res = MaxMatch(n,m);
printf("%d\n",n+m-res);
}
return 0;
}
/*
55
4 4
o***
oo*o
oooo
oooo */

  


POJ 3020——Antenna Placement——————【 最小路径覆盖、奇偶性建图】的更多相关文章

  1. poj 3020 Antenna Placement (最小路径覆盖)

    链接:poj 3020 题意:一个矩形中,有n个城市'*'.'o'表示空地,如今这n个城市都要覆盖无线,若放置一个基站, 那么它至多能够覆盖本身和相邻的一个城市,求至少放置多少个基站才干使得全部的城市 ...

  2. 二分图最大匹配(匈牙利算法) POJ 3020 Antenna Placement

    题目传送门 /* 题意:*的点占据后能顺带占据四个方向的一个*,问最少要占据多少个 匈牙利算法:按坐标奇偶性把*分为两个集合,那么除了匹配的其中一方是顺带占据外,其他都要占据 */ #include ...

  3. poj 3020 Antenna Placement(最小路径覆盖 + 构图)

    http://poj.org/problem?id=3020 Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total Sub ...

  4. POJ 3020 Antenna Placement【二分匹配——最小路径覆盖】

    链接: http://poj.org/problem?id=3020 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...

  5. poj 3020 Antenna Placement (最小路径覆盖)

    二分图题目 当时看到网上有人的博客写着最小边覆盖,也有人写最小路径覆盖,我就有点方了,斌哥(kuangbin)的博客上只给了代码,没有解释,但是现在我还是明白了,这是个最小路径覆盖(因为我现在还不知道 ...

  6. POJ 3020 Antenna Placement (二分图最小路径覆盖)

    <题目链接> 题目大意:一个矩形中,有N个城市’*’,现在这n个城市都要覆盖无线,每放置一个基站,至多可以覆盖相邻的两个城市.问至少放置多少个基站才能使得所有的城市都覆盖无线? 解题分析: ...

  7. POJ 3020 Antenna Placement 【最小边覆盖】

    传送门:http://poj.org/problem?id=3020 Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total ...

  8. POJ - 3020 Antenna Placement(最小覆盖路径)

    ---恢复内容开始--- https://vjudge.net/problem/POJ-3020 题意 *--代表城市,o--代表空地 给城市安装无线网,一个无线网最多可以覆盖两座城市,问覆盖所有城市 ...

  9. POJ 3020 Antenna Placement 最大匹配

    Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6445   Accepted: 3182 ...

随机推荐

  1. c#继承、多重继承

    c#类 1.c#类的继承 在现有类(基类.父类)上建立新类(派生类.子类)的处理过程称为继承.派生类能自动获得基类的除了构造函数和析构函数以外的所有成员,可以在派生类中添加新的属性和方法扩展其功能.继 ...

  2. JavaScript 判断 Undefined 类型

    var cookiestr = ''; chrome.cookies.getAll( { 'url': 'https://mp.weixin.qq.com', 'secure': true }, fu ...

  3. Glib学习笔记(三)

    你将学到什么 如何实现Object的方法 Object的方法 Object的public方法 在头文件声明一个函数,然后在源文件中实现函数即可 /* declaration in the header ...

  4. UWP&WP8.1 基础控件——Border

    border 是边框控件 border是UWP和WP8.1最常用的控件之一. border字面意义是用来添加边框的. 基础用法 <border BorderThickness="1&q ...

  5. 「十二省联考 2019」异或粽子——tire树+堆

    题目 [题目描述] 小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子. 小粽面前有 $n$ 种互不相同的粽子馅儿,小粽将它们摆放为了一排,并从左至右编号为 $1$ 到 $n$.第 $i$ 种馅 ...

  6. 解释器模式Interpreter详解

    原文链接:https://www.cnblogs.com/java-my-life/archive/2012/06/19/2552617.html 在阎宏博士的<JAVA与模式>一书中开头 ...

  7. rest framework认证组件和django自带csrf组件区别详解

    使用 Django 中的 csrf 处理 Django中有一个django.middleware.csrf.CsrfViewMiddleware中间件提供了全局的csrf检查.它的原理是在<fo ...

  8. 【NOIP 2009】靶形数独

    题目描述 小城和小华都是热爱数学的好学生,最近,他们不约而同地迷上了数独游戏,好胜的他们想用数独来一比高低.但普通的数独对他们来说都过于简单了,于是他们向 Z 博士请教,Z 博士拿出了他最近发明的“靶 ...

  9. linux heap堆分配

    heap堆分配在用户层面:malloc函数用于heap内存分配 void* malloc(size_t size); 进程的虚拟内存地址布局: 对用户来说,主要关注的空间是User Space.将Us ...

  10. HiBench学习笔记

    HiBench资源及教程:https://github.com/intel-hadoop/HiBench 介绍: Hadoop新人 环境 linux 该笔记针对英语弱鸡&自己在使用过程用遇到的 ...