LCS(Longest Common Subsequence),即最长公共子序列。一个序列,如果是两个或多个已知序列的子序列,且是所有子序列中最长的,则为最长公共子序列。

原理:   

事实上,最长公共子序列问题也有最优子结构性质。然后,用动态规划的方法找到状态转换方程。

记:Xi=﹤x1,⋯,xi﹥即X序列的前i个字符 (1≤i≤m)(前缀)

Yj=﹤y1,⋯,yj﹥即Y序列的前j个字符 (1≤j≤n)(前缀)

假定Z=﹤z1,⋯,zk﹥∈LCS(X , Y)。

  • xm=yn(最后一个字符相同),则不难用反证法证明:该字符必是X与Y的任一最长公共子序列Z(设长度为k)的最后一个字符,即有zk = xm = yn 且显然有Zk-1∈LCS(Xm-1 , Yn-1)即Z的前缀Zk-1是Xm-1与Yn-1的最长公共子序列。此时,问题化归成求Xm-1与Yn-1的LCS(LCS(X , Y)的长度等于LCS(Xm-1 , Yn-1)的长度加1)。

  • xm≠yn,则亦不难用反证法证明:要么Z∈LCS(Xm-1, Y),要么Z∈LCS(X , Yn-1)。由于zk≠xm与zk≠yn其中至少有一个必成立,若zk≠xm则有Z∈LCS(Xm-1 , Y),类似的,若zk≠yn 则有Z∈LCS(X , Yn-1)。此时,问题化归成求Xm-1与Y的LCS及X与Yn-1的LCS。LCS(X , Y)的长度为:max{LCS(Xm-1 , Y)的长度, LCS(X , Yn-1)的长度}。

由于上述当xm≠yn的情况中,求LCS(Xm-1 , Y)的长度与LCS(X , Yn-1)的长度,这两个问题不是相互独立的:两者都需要求LCS(Xm-1,Yn-1)的长度。另外两个序列的LCS中包含了两个序列的前缀的LCS,故问题具有最优子结构性质考虑用动态规划法。

 public static int LCS(String x,String y){
int [][] z=new int [x.length()+1][y.length()+1];
int i,j;
for( i=0;i<=x.length();i++)
z[i][0]=0;
for( j=0;j<=y.length();j++)
z[0][j]=0; for(i=1;i<=x.length();i++){
for( j=1;j<=y.length();j++){
if(x.charAt(i-1)==y.charAt(j-1)){
z[i][j]= z[i-1][j-1]+1;
}
else
z[i][j]=z[i-1][j] > z[i][j-1] ?z[i-1][j]:z[i][j-1];
}
}
return z[x.length()][y.length()];
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

LCS(最长公共子序列问题)的更多相关文章

  1. 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列

    出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...

  2. POJ 1458 Common Subsequence(LCS最长公共子序列)

    POJ 1458 Common Subsequence(LCS最长公共子序列)解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?c ...

  3. 动态规划模板2|LCS最长公共子序列

    LCS最长公共子序列 模板代码: #include <iostream> #include <string.h> #include <string> using n ...

  4. LCS 最长公共子序列

    区别最长公共子串(连续) ''' LCS 最长公共子序列 ''' def LCS_len(x, y): m = len(x) n = len(y) dp = [[0] * (n + 1) for i ...

  5. LCS最长公共子序列(最优线性时间O(n))

    这篇日志主要为了记录这几天的学习成果. 最长公共子序列根据要不要求子序列连续分两种情况. 只考虑两个串的情况,假设两个串长度均为n. 一,子序列不要求连续. (1)动态规划(O(n*n)) (转自:h ...

  6. LCS最长公共子序列

    问题:最长公共子序列不要求所求得的字符串在所给字符串中是连续的,如输入两个字符串ABCBDAB和BDCABA,字符串BCBA和BDAB都是他们的公共最长子序列 该问题属于动态规划问题 解答:设序列X= ...

  7. LCS最长公共子序列HDU1159

    最近一直在学习算法,基本上都是在学习动态规划以及字符串.当然,两者交集最经典之一则是LCS问题. 首先LCS的问题基本上就是在字符串a,b之间找到最长的公共子序列,比如 YAOLONGBLOG 和 Y ...

  8. POJ 2250(LCS最长公共子序列)

    compromise Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u   Descri ...

  9. LCS最长公共子序列~dp学习~4

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1513 Palindrome Time Limit: 4000/2000 MS (Java/Others ...

  10. Atcoder F - LCS (DP-最长公共子序列,输出字符串)

    F - LCS Time Limit: 2 sec / Memory Limit: 1024 MB Score : 100100 points Problem Statement You are gi ...

随机推荐

  1. 【python】-- Redis简介、命令、示例

    Redis简介 Redis 是完全开源免费的,遵守BSD协议,是一个高性能的key-value数据库. Redis 与其他 key - value 缓存产品有以下三个特点: Redis支持数据的持久化 ...

  2. socket编程详解

    http://www.cnblogs.com/skynet/archive/2010/12/12/1903949.html http://blog.csdn.net/hguisu/article/de ...

  3. C# 自定义异常类 throw语句抛出异常

    Exception概述: 异常(Exception)一般分为两大类SystemException.ApplicationException,前者是预定义的异常类,后者是用户自定义异常类时需要继承的类 ...

  4. spring-boot2

    1.Spring Boot 1.1.什么是Spring Boot Java是静态语言,先变异后运行都是静态语言,不编译直接运行是动态语言(js是动态语言不需要编译,因为浏览器可以直接解析).Java笨 ...

  5. Java多线程系列 JUC线程池07 线程池原理解析(六)

     关闭“线程池” shutdown()的源码如下: public void shutdown() { final ReentrantLock mainLock = this.mainLock; // ...

  6. 第五章 python中的异常处理

    每种编程语言都会有自己的异常处理机制,虽然各有特色,但基本上都差不多,那么python中强大异常处理机制是什么样的呢? 一.异常: python用异常对象来表示异常情况,遇到错误后,会引发异常.如果异 ...

  7. web框架详解之tornado 一 模板语言以及框架本质

    一.概要 Tornado 是 FriendFeed 使用的可扩展的非阻塞式 web 服务器及其相关工具的开源版本.这个 Web 框架看起来有些像web.py 或者 Google 的 webapp,不过 ...

  8. msm8909+android5.1分区及烧录的镜像文件介绍【转】

    本文转载自: EMMC的分区及其保存的文件 Partition label filename 说明 PrimaryGPT gpt_main0.bin modem NON-HLOS.bin sbl1 s ...

  9. 修改push动画的方向

    CATransition *animation = [CATransition animation]; animation.duration = 0.4; animation.timingFuncti ...

  10. POJ 之 Is the Information Reliable?

    B - Is the Information Reliable? Time Limit:3000MS     Memory Limit:131072KB     64bit IO Format:%I6 ...