LCS(Longest Common Subsequence),即最长公共子序列。一个序列,如果是两个或多个已知序列的子序列,且是所有子序列中最长的,则为最长公共子序列。

原理:   

事实上,最长公共子序列问题也有最优子结构性质。然后,用动态规划的方法找到状态转换方程。

记:Xi=﹤x1,⋯,xi﹥即X序列的前i个字符 (1≤i≤m)(前缀)

Yj=﹤y1,⋯,yj﹥即Y序列的前j个字符 (1≤j≤n)(前缀)

假定Z=﹤z1,⋯,zk﹥∈LCS(X , Y)。

  • xm=yn(最后一个字符相同),则不难用反证法证明:该字符必是X与Y的任一最长公共子序列Z(设长度为k)的最后一个字符,即有zk = xm = yn 且显然有Zk-1∈LCS(Xm-1 , Yn-1)即Z的前缀Zk-1是Xm-1与Yn-1的最长公共子序列。此时,问题化归成求Xm-1与Yn-1的LCS(LCS(X , Y)的长度等于LCS(Xm-1 , Yn-1)的长度加1)。

  • xm≠yn,则亦不难用反证法证明:要么Z∈LCS(Xm-1, Y),要么Z∈LCS(X , Yn-1)。由于zk≠xm与zk≠yn其中至少有一个必成立,若zk≠xm则有Z∈LCS(Xm-1 , Y),类似的,若zk≠yn 则有Z∈LCS(X , Yn-1)。此时,问题化归成求Xm-1与Y的LCS及X与Yn-1的LCS。LCS(X , Y)的长度为:max{LCS(Xm-1 , Y)的长度, LCS(X , Yn-1)的长度}。

由于上述当xm≠yn的情况中,求LCS(Xm-1 , Y)的长度与LCS(X , Yn-1)的长度,这两个问题不是相互独立的:两者都需要求LCS(Xm-1,Yn-1)的长度。另外两个序列的LCS中包含了两个序列的前缀的LCS,故问题具有最优子结构性质考虑用动态规划法。

 public static int LCS(String x,String y){
int [][] z=new int [x.length()+1][y.length()+1];
int i,j;
for( i=0;i<=x.length();i++)
z[i][0]=0;
for( j=0;j<=y.length();j++)
z[0][j]=0; for(i=1;i<=x.length();i++){
for( j=1;j<=y.length();j++){
if(x.charAt(i-1)==y.charAt(j-1)){
z[i][j]= z[i-1][j-1]+1;
}
else
z[i][j]=z[i-1][j] > z[i][j-1] ?z[i-1][j]:z[i][j-1];
}
}
return z[x.length()][y.length()];
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

LCS(最长公共子序列问题)的更多相关文章

  1. 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列

    出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...

  2. POJ 1458 Common Subsequence(LCS最长公共子序列)

    POJ 1458 Common Subsequence(LCS最长公共子序列)解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?c ...

  3. 动态规划模板2|LCS最长公共子序列

    LCS最长公共子序列 模板代码: #include <iostream> #include <string.h> #include <string> using n ...

  4. LCS 最长公共子序列

    区别最长公共子串(连续) ''' LCS 最长公共子序列 ''' def LCS_len(x, y): m = len(x) n = len(y) dp = [[0] * (n + 1) for i ...

  5. LCS最长公共子序列(最优线性时间O(n))

    这篇日志主要为了记录这几天的学习成果. 最长公共子序列根据要不要求子序列连续分两种情况. 只考虑两个串的情况,假设两个串长度均为n. 一,子序列不要求连续. (1)动态规划(O(n*n)) (转自:h ...

  6. LCS最长公共子序列

    问题:最长公共子序列不要求所求得的字符串在所给字符串中是连续的,如输入两个字符串ABCBDAB和BDCABA,字符串BCBA和BDAB都是他们的公共最长子序列 该问题属于动态规划问题 解答:设序列X= ...

  7. LCS最长公共子序列HDU1159

    最近一直在学习算法,基本上都是在学习动态规划以及字符串.当然,两者交集最经典之一则是LCS问题. 首先LCS的问题基本上就是在字符串a,b之间找到最长的公共子序列,比如 YAOLONGBLOG 和 Y ...

  8. POJ 2250(LCS最长公共子序列)

    compromise Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u   Descri ...

  9. LCS最长公共子序列~dp学习~4

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1513 Palindrome Time Limit: 4000/2000 MS (Java/Others ...

  10. Atcoder F - LCS (DP-最长公共子序列,输出字符串)

    F - LCS Time Limit: 2 sec / Memory Limit: 1024 MB Score : 100100 points Problem Statement You are gi ...

随机推荐

  1. NSURLSession各文件关系

    NSURLSession   通过session创建任务 @property (class, readonly, strong) NSURLSession *sharedSession; + (NSU ...

  2. Java编程中的一些常见问题汇总

    转载自  http://macrochen.iteye.com/blog/1393502 每天在写Java程序,其实里面有一些细节大家可能没怎么注意,这不,有人总结了一个我们编程中常见的问题.虽然一般 ...

  3. Python读属性文件

    # coding:utf-8 class Properties: def __init__(self, file_name): self.file_name = file_name self.prop ...

  4. Symfony 上传图片教程

    介绍:我使用的Bundle:"vich/uploader-bundle": "^1.4"; "liip/imagine-bundle": & ...

  5. HTTP基础概念讲解

    HTTP基础概念讲解 作者:Danbo 时间:2016-03-17 1.1.http协议头部:curl -I www.meituan.com 1.2.静态和动态 静态网页:纯HTML格式的网页,后台没 ...

  6. 每天一个Linux命令(6)rmdir命令

         rmdir命令用来删除空目录. 利用rmdir命令可以从一个目录中删除一个或多个空的子目录.该命令从一个目录中删除一个或多个子目录,其中dirname表示目录名.如果dirname中没有指定 ...

  7. Data Structure Binary Tree: Boundary Traversal of binary tree

    http://www.geeksforgeeks.org/boundary-traversal-of-binary-tree/ #include <iostream> #include & ...

  8. VC2010编译时提示:转换到 COFF 期间失败: 文件无效或损坏

    有时候新安装好VS2010后编译时就提示上述错误,罗列一下从网上查找到的几种解决方案: 方案1: 点击“项目”-->“属性”--> “清单工具”, 然后选择"输入和输出’--&g ...

  9. <Linux内核源码>文件系统VFS内核4.0.4版本基本概念源码

    题外话:Linux内核从2.x和3.x到现在最新的4.x变化非常大,最直观的表现就是很多书上的内核代码已经无法直接继续使用,所以看看新的源码是非常有意义的! (下文中的内核源码都来自于 kernel ...

  10. LINQ 学习路程 -- 查询操作 Distinct Except Intersect Union

    Set Operators Usage Distinct 去掉集合的重复项 Except 返回两个集合的不同,第一个集合的元素不能出现在第二个集合中 Intersect 返回两个集合的交集,即元素同时 ...