浅谈区间最值操作与历史最值问题:https://www.cnblogs.com/AKMer/p/10225100.html

题目传送门:https://lydsy.com/JudgeOnline/problem.php?id=4364

似乎可以不用吉司机线段树的作法……因为只需要维护区间最大最小值,也只有区间取最大最小值操作,所以可以直接用普通的线段树延迟标记解决这道问题。只要把最大值标记和最小值标记之间的关系处理得当即可。

时间复杂度:\(O((n+m)logn)\)

空间复杂度:\(O(n)\)

代码如下:

#include <cstdio>
#include <algorithm>
using namespace std; const int maxn=2e6+6,inf=1e9; int n,m; int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
} struct segmemt_tree {
int mx[maxn<<2],mn[maxn<<2];
int tagmx[maxn<<2],tagmn[maxn<<2]; void update(int p) {
mx[p]=max(mx[p<<1],mx[p<<1|1]);
mn[p]=min(mn[p<<1],mn[p<<1|1]);
} void build(int p,int l,int r) {
tagmx[p]=-inf,tagmn[p]=inf;
if(l==r)return;
int mid=(l+r)>>1;
build(p<<1,l,mid);
build(p<<1|1,mid+1,r);
} void Max_tag(int p,int v) {
mx[p]=max(mx[p],v),mn[p]=max(mn[p],v);
tagmx[p]=max(tagmx[p],v);tagmn[p]=max(tagmn[p],v);
} void Min_tag(int p,int v) {
mx[p]=min(mx[p],v),mn[p]=min(mn[p],v);
tagmx[p]=min(tagmx[p],v),tagmn[p]=min(tagmn[p],v);
} void push_down(int p) {
if(tagmx[p]!=-inf) {
Max_tag(p<<1,tagmx[p]);
Max_tag(p<<1|1,tagmx[p]);
tagmx[p]=-inf;
}
if(tagmn[p]!=inf) {
Min_tag(p<<1,tagmn[p]);
Min_tag(p<<1|1,tagmn[p]);
tagmn[p]=inf;
}
} void Max(int p,int l,int r,int L,int R,int v) {
if(L<=l&&r<=R) {
Max_tag(p,v);
return;
}
int mid=(l+r)>>1;push_down(p);
if(L<=mid)Max(p<<1,l,mid,L,R,v);
if(R>mid)Max(p<<1|1,mid+1,r,L,R,v);
update(p);
} void Min(int p,int l,int r,int L,int R,int v) {
if(L<=l&&r<=R) {
Min_tag(p,v);
return;
}
int mid=(l+r)>>1;push_down(p);
if(L<=mid)Min(p<<1,l,mid,L,R,v);
if(R>mid)Min(p<<1|1,mid+1,r,L,R,v);
update(p);
} void print(int p,int l,int r) {
if(l==r) {printf("%d\n",mx[p]);return;}
int mid=(l+r)>>1;push_down(p);
print(p<<1,l,mid),print(p<<1|1,mid+1,r);
}
}T; int main() {
n=read(),m=read();T.build(1,1,n);
for(int i=1;i<=m;i++) {
int opt=read(),l=read()+1,r=read()+1,v=read();
if(opt==1)T.Max(1,1,n,l,r,v);
else T.Min(1,1,n,l,r,v);
}T.print(1,1,n);
return 0;
}

BZOJ4364:[IOI2014]Wall的更多相关文章

  1. [IOI2014]Wall

    [IOI2014]Wall 题目大意: 给你一个长度为\(n(n\le2\times10^6)\)的数列,初始全为\(0\).\(m(m\le5\times10^5)\)次操作,每次让区间\([l_i ...

  2. 4364: [IOI2014]wall砖墙

    4364: [IOI2014]wall砖墙 链接 分析: 线段树,维护一个最大值,一个最小值. 代码: #include<bits/stdc++.h> ],*p1 = buf,*p2 = ...

  3. bzoj4364: [IOI2014]wall砖墙

    线段树打标记的好(luo)题 打打标记,记得下移 = =听说2000000是用来卡线段树的 = =怎么办呢,,, = =打个读入优化看看能不能卡过去吧 #include<cstdio> # ...

  4. BZOJ4364: [IOI2014]wall砖墙(线段树)

    题意 题目链接 Sol 一个显然的思路是维护最大最小值以及最大最小值的覆盖标记. https://paste.ubuntu.com/p/WXpBvzF6Y2/ 但实际上因为这题只需要输出最后的操作序列 ...

  5. P4560 [IOI2014]Wall 砖墙

    题目描述 给定一个长度为 nn且初始值全为 00的序列.你需要支持以下两种操作: Add L, R, hL,R,h:将序列 [L, R][L,R]内所有值小于 hh的元素都赋为 hh,此时不改变高度大 ...

  6. 【[IOI2014]Wall 砖墙】

    好像随便一卡就最优解了 malao告诉我这道题挺不错的,于是就去写了写 这两个操作很有灵性啊,感觉这么有特点的数大概是需要分块维护的吧 但是并没有什么区间查询,只是在最后输出整个序列 于是我们就直接用 ...

  7. LUOGU P4560 [IOI2014]Wall 砖墙 (线段树)

    传送门 解题思路 线段树打标记,刚开始想复杂了,维护了四个标记.后来才知道只需要维护一个最大值最小值即可,然后更新的时候分类讨论一下. 代码 #include<iostream> #inc ...

  8. Linux编译工具:gcc入门

    1. 什么是gcc gcc的全称是GNU Compiler Collection,它是一个能够编译多种语言的编译器.最开始gcc是作为C语言的编译器(GNU C Compiler),现在除了c语言,还 ...

  9. Image Wall - jQuery & CSS3 图片墙效果

    今天我们要为您展示如何基于 jQuery 和 CSS3 创建一个整洁的图片墙效果.我们的想法是在页面上洒上一些大小不同的缩略图,并在当我们点击图片时候显示丝带,会显示一些描述,再次点击缩略图时,丝带将 ...

随机推荐

  1. 【python】-- Socket

    socket socket本质上就是在2台网络互通的电脑之间,架设一个通道,两台电脑通过这个通道来实现数据的互相传递. 我们知道网络 通信 都 是基于 ip+port 方能定位到目标的具体机器上的具体 ...

  2. Mac下nginx安装和配置

    nginx安装 brew search nginx brew install nginx 安装完以后,可以在终端输出的信息里看到一些配置路径: /usr/local/etc/nginx/nginx.c ...

  3. Linux安装Nignx基于域名的多虚拟主机实战

    看这个文章之前,要保证你的Nginx已经安装成功! 如果没有,请移步到下面这个文章,看完后再回来看! https://www.cnblogs.com/apollo1616/p/10214531.htm ...

  4. python 的for else语句

    for中间不是break出来的,是正常循环完跳出循环的会执行else内的语句 while else语句也是如此 这个以前的常见语言没有,特此记录

  5. STM32 ~ J-LINK V8 修复

    1.1    安装固件烧录软件 ♦请ATMEL官方网址下载AT91-ISP下载软件. 软件下载地址:http://www.atmel.com/dyn/products/tools_card.asp?t ...

  6. MYSQL:基础——事务处理

    MYSQL:基础——事务处理 事物处理 1.什么是事物处理 事务处理(transaction processing)可以用来维护数据库的完整性,它保证成批的MySQL操作要么完全执行,要么完全不执行 ...

  7. interface -- 接口类

    <?php /** *为了声明接口,需要使用关键字interface *interface IExampleInterface {} *说明(大多数开发人员选择在节后名称前加上大写字母I作为前缀 ...

  8. 扣出thinkphp数据库操作类

    假如你是一位thinkphp的使用者,想必你会觉得thinkphp操作数据库非常方便.现在在你面前有一个非常小的作业,小到完全没有必要用thinkphp去完成它.但是你又觉得不用thinkphp的话, ...

  9. C#转换人民币大写金额

    /// <summary> /// 转换人民币大写金额. /// </summary> public class RMBConverter { /// <summary& ...

  10. mini2440移植uboot 2011.03(上)

    参考博文: <u-boot-2011.03在mini2440/micro2440上的移植> 本来我想移植最新版的uboot,但是移植却不太成功,所以先模仿他人的例子重新执行一遍,对uboo ...