bzoj 1833: [ZJOI2010]count 数位dp
题目:
给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次。
题解
设\(f[i][j]\)表示长度为\(i\)的所有合法数字中有多少数码\(j\)
设\(g[i][j]\)表示长度为\(i\)的可有前导零的数字中有多少数码\(j\)
然后恶心不想说了.
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(ll &x){
x=0;static char ch;static bool flag;flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
#define rg register int
#define rep(i,a,b) for(rg i=(a);i<=(b);++i)
#define per(i,a,b) for(rg i=(a);i>=(b);--i)
const int maxn = 22;
ll f[maxn][maxn],g[maxn][maxn];
int a[maxn],cnt;
inline void init(int n){
rep(i,0,9){
g[1][i] = 1;
if(i) f[1][i] = 1;
}
ll pw = 1;
rep(i,2,n){
pw *= 10;
rep(j,0,9){
g[i][j] = 10*g[i-1][j] + pw;
f[i][j] = 9*g[i-1][j];
if(j != 0) f[i][j] += pw;
}
}
}
ll solve(ll n,int x){
if(n == 0) return 0;
int cnt = 0;
ll ans = 0;
static int a[maxn];
while(n){
a[++cnt] = n % 10;
if(a[cnt] == x) ++ ans;
n /= 10;
}
ll pw = 1;
rep(i,1,cnt) pw *= 10;
ll tmp = 0;
per(i,cnt,1){
pw /= 10;
ans += tmp*a[i]*pw;
if(i == cnt){
ans += (a[i] - 1)*g[i-1][x];
if(x && x < a[i]) ans += pw;
}else{
ans += a[i]*g[i-1][x];
if(x < a[i]) ans += pw;
}
if(a[i] == x) ++ tmp;
}
rep(i,1,cnt-1) ans += f[i][x];
return ans;
}
int main(){
init(13);
ll l,r;read(l);read(r);
rep(i,0,9){
printf("%lld",solve(r,i) - solve(l-1,i));
if(i != 9) putchar(' ');
else putchar('\n');
}
return 0;
}
bzoj 1833: [ZJOI2010]count 数位dp的更多相关文章
- [BZOJ 1833] [ZJOI2010] count 数字计数 【数位DP】
题目链接:BZOJ - 1833 题目分析 数位DP .. 用 f[i][j][k] 表示第 i 位是 j 的 i 位数共有多少个数码 k . 然后差分询问...Get()中注意一下,如果固定了第 i ...
- BZOJ 1833: [ZJOI2010]count 数字计数( dp )
dp(i, j, k)表示共i位, 最高位是j, 数字k出现次数. 预处理出来. 差分答案, 对于0~x的答案, 从低位到高位进行讨论 -------------------------------- ...
- bzoj 1833: [ZJOI2010]count 数字计数【数位dp】
非典型数位dp 先预处理出f[i][j][k]表示从后往前第i位为j时k的个数,然后把答案转换为ans(r)-ans(l-1),用预处理出的f数组dp出f即可(可能也不是dp吧--) #include ...
- BZOJ 1833: [ZJOI2010]count 数字计数
Description 问 \([L,R]\) 中0-9的个数. Sol 数位DP. 预处理好长度为 \(i\), 最高位为 \(j\) 的数位之和. 然后从上往下计算,不要忘记往下走的同时要把高位的 ...
- BZOJ 1833 数字计数 数位DP
题目链接 做的第一道数位DP题,听说是最基础的模板题,但还是花了好长时间才写出来..... 想深入了解下数位DP的请点这里 先设dp数组dp[i][j][k]表示数位是i,以j开头的数k出现的次数 有 ...
- bzoj 1833 [ZJOI2010]count 数字计数(数位DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1833 [题意] 统计[a,b]区间内各数位出现的次数. [思路] 设f[i][j][k ...
- BZOJ 1833 ZJOI2010 count 数字计数 数位DP
题目大意:求[a,b]间全部的整数中0~9每一个数字出现了几次 令f[i]为i位数(算前导零)中每一个数出现的次数(一定是同样的,所以仅仅记录一个即可了) 有f[i]=f[i-1]*10+10^(i- ...
- [bzoj1833][ZJOI2010][count] (数位dp)
Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. Output 输出文 ...
- 1833: [ZJOI2010]count 数字计数
1833: [ZJOI2010]count 数字计数 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 2951 Solved: 1307[Submit][ ...
随机推荐
- 经典的css reset代码 (reset.css)
<style> html, body, div, span, applet, object, iframe, h1, h2, h3, h4, h5, h6, p, blockquote, ...
- 内存使用分析工具Valgrind简单用法
转载自 http://www.cnblogs.com/sunyubo/archive/2010/05/05/2282170.html 暂时还未使用过,记录下,记录下,记录下 Valgrind的主要作者 ...
- android中handler和bundle有什么区别和联系 都是用来传递消息吗都是信息的载体吗
1.handler是消息处理者,通常重写Handler的handleMessage()方法,在方法中处理接收到的不同消息,例如: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Ha ...
- http请求(get 和 post 请求)与响应
版权声明:欢迎转载 https://blog.csdn.net/chenmoquan/article/details/36656101 一.http请求 http请求基本格式 ============ ...
- Openstack 架构简述
概述 在学习OpenStack的过程中,感觉对整个OpenStack的架构稍稍有些了解,所以将这些记录下来,一来防止自己忘记,二来也可以对有需要的人提供帮助 本文章相关的灵感/说明/图片来自于http ...
- PHP网页导出Word文档的方法分离
今天要探讨的是PHP网页导出Word文档的方法,使用其他语言的朋友也可以参考,因为原理是差不多的. 原理 一般,有2种方法可以导出doc文档,一种是使用com,并且作为php的一个扩展库安装到服务器上 ...
- CAS的实现Atomic类库
atomic 原子(atomic)本意是"不能被进一步分割的最小粒子",而原子操作(atomic operation)意为"不可被中断的一个或一系列操作".在多 ...
- Yii2 如何更好的在页面注入CSS
首先 先添加一个widgets,代码如下(提示:使用时注意修改命名空间) <?php /** * User: yiqing * Date: 2014/12/15 * Time: 0:21 */ ...
- Linux通过Shell对文件自动进行远程拷贝备份
在执行计划任务拷贝文件的时候,用scp命令需要输入密码,这里用公共密钥的方式实现密码的自动输入. 具体操作: 要求:把192.168.0.2机上的test.tar拷贝到192.168.0.3机器的上 ...
- php......调研投票练习
调研题目与调研选项显示页面<style type="text/css"> #list{ width:400px; height:200px;} #jieguo{ wid ...