做题感悟:做完这题发现状态压缩有很多须要优化的地方。

解题思路:状态压缩

開始自己用的一般的思路,就和炮兵阵地,郑厂长等题类似的方法做的,開始超时,然后把数组开到了最小的极限就险过。然后看了别人的代码感觉须要优化(注意)的地方太多了。

首先我们这题能够预处理出来上下两行相应的合法状态,这样我们就确定下来上下两行相应的状态了。这是第一步的优化 。由于当前行仅仅与上一行有关(这里仅仅考虑当前行对上一行的影响就能够)。我们能够把 dp 第一维开成 2 的就能够了,这是第二步的优化,尽管这步作用有点小。最后
,我们还能够抛弃一些不合法的输入 ,假如是 n * n 的棋盘,一行最多能够防止(n+1)/ 2 个,然后 n 行最多能够放置 ( n + 1 ) / 2 * ( n + 1 ) / 2 个。 为什么是 ( n + 1 ) / 2 行放置呢 ? 由于每一个格子攻击相邻的八个格子。不要用n / 2 ,由于假设 奇数行的话就少算了一行。

这题也能够用DFS递推和铺方格差点儿相同。这样也相当于预处理出上下两行相应的状态。

代码:

#include<iostream>
#include<sstream>
#include<map>
#include<cmath>
#include<fstream>
#include<queue>
#include<vector>
#include<sstream>
#include<cstring>
#include<cstdio>
#include<stack>
#include<bitset>
#include<ctime>
#include<string>
#include<cctype>
#include<iomanip>
#include<algorithm>
using namespace std ;
#define INT long long int
#define L(x) (x * 2)
#define R(x) (x * 2 + 1)
const int INF = 0x3f3f3f3f ;
const double esp = 0.0000000001 ;
const double PI = acos(-1.0) ;
const int mod = 1e9 + 7 ;
const int MY = 1400 + 5 ;
const int MX = 150 ;
int n ,m ,num ,top ;
INT dp[2][MX][101] ;
int key[MX] ,h[MX] ;
struct node
{
int x ,y ,c ;
}P[MY] ;
void init() // 预处理合法状态
{
for(int S = 0 ;S < (1<<n) ; ++S)
if(!(S&(S>>1)) && !(S&(S<<1)))
{
int nx = 0 ;
for(int i = 0 ;i < n ; ++i)
if(S&(1<<i))
nx++ ;
key[num] = S ;
h[num++] = nx ;
}
}
int main()
{
while(~scanf("%d%d" ,&n ,&m))
{
if(((n+1)/2)*((n+1)/2) < m) // 抛弃不合法的状态
{
puts("0") ;
continue ;
}
num = 0 ; top = 0 ;
init() ; // 预处理合法状态
for(int i = 0 ;i < num ; ++i) // 预处理上下两行相应的合法状态
for(int j = 0 ;j < num ; ++j)
if(!(key[i]&(key[j]>>1)) && !(key[i]&(key[j]<<1)) && !(key[i]&key[j]))
{
P[top].x = i ;
P[top].y = j ;
P[top++].c = h[j] ;
}
memset(dp[0] ,0 ,sizeof(dp[0])) ;
dp[0][0][0] = 1 ;
for(int i = 1 ;i <= n ; ++i)
{
memset(dp[i&1] ,0 ,sizeof(dp[i&1])) ;
for(int j = 0 ;j < top ; ++j) // 上一行的合法状态
for(int t = 0 ;t <= m ; ++t) // 安放的个数
if(t + P[j].c <= m) // 个数限制
dp[i&1][P[j].y][t+P[j].c] += dp[(i+1)&1][P[j].x][t] ;
}
INT ans = 0 ;
for(int i = 0 ;i < num ; ++i)
ans += dp[n&1][i][m] ;
printf("%lld\n" ,ans) ;
}
return 0 ;
}

NYOJ 492 King (状态压缩)的更多相关文章

  1. bzoj 1087 [SCOI2005]互不侵犯King 状态压缩dp

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MB[Submit][Status][Discuss] Descripti ...

  2. BZOJ 1087 互不侵犯King 状态压缩DP

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1087 题目大意; 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国 ...

  3. BZOJ1087 [SCOI2005]互不侵犯King 状态压缩动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1087 题意概括 在n*n的棋盘上面放k个国王,使得他们互相无法攻击,问有多少种摆法. 题解 dp[ ...

  4. 【bzoj1087】互不侵犯King 状态压缩dp

    AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=1087 [题解] 用f[i][j][k]表示前i行放了j个棋子且第i行的状态为k的方案数. ...

  5. HDU 3681 Prison Break(BFS+二分+状态压缩DP)

    Problem Description Rompire is a robot kingdom and a lot of robots live there peacefully. But one da ...

  6. [ACM] HDU 5025 Saving Tang Monk (状态压缩,BFS)

    Saving Tang Monk Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  7. hdu 3681 Prison Break(状态压缩+bfs)

    Problem Description Rompire . Now it’s time to escape, but Micheal# needs an optimal plan and he con ...

  8. 状态压缩动态规划 状压DP

    总述 状态压缩动态规划,就是我们俗称的状压DP,是利用计算机二进制的性质来描述状态的一种DP方式 很多棋盘问题都运用到了状压,同时,状压也很经常和BFS及DP连用,例题里会给出介绍 有了状态,DP就比 ...

  9. BFS+状态压缩DP+二分枚举+TSP

    http://acm.hdu.edu.cn/showproblem.php?pid=3681 Prison Break Time Limit: 5000/2000 MS (Java/Others)   ...

随机推荐

  1. [BZOJ 1567] Blue Mary的战役地图

    Link: BZOJ 1567 传送门 Solution: 矩阵Hash/二维$Hash$模板题 涉及到需要快速查询.匹配的题目,考虑直接上$Hash$ 矩阵$Hash$其实就是每行先各$Hash$一 ...

  2. Java字符串(String)

    从表面上看,字符串就是双引号之间的数据,例如“微学苑”.“http://www.weixueyuan.net”等.在Java中,可以使用下面的方法定义字符串:    String stringName ...

  3. delphi 读取编译的version信息

    在create中调用就可以了 unit About; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, ...

  4. ASIHTTPRequest框架使用总结系列之阿堂教程1(安装配置篇

    在前年,阿堂在<IOS开发系列之阿堂教程:玩转IPhone客户端和Web服务端交互(客户端)实践>一文中,对于ASIHTTPRequest框架有过一些介简单绍,具体链接地址见http:// ...

  5. eclipse 启动报错 java was started but returned code=13

    eclipse启动不了,出现“Java was started but returned exit code=13......”对话框如下 我的解决方法是:去控制面板--程序--卸载程序和功能下面查看 ...

  6. 使用websocket进行消息推送服务

    Websocket主要做消息推送,简单,轻巧,比comet好用 入门了解:https://www.cnblogs.com/xdp-gacl/p/5193279.html /** * A Web Soc ...

  7. [转载]JAVA调用Shell脚本

    FROM:http://blog.csdn.net/jj12345jj198999/article/details/11891701 在实际项目中,JAVA有时候需要调用C写出来的东西,除了JNI以外 ...

  8. [Functional Programming] Define Discrete State Transitions using the State ADT

    We build our first state transactions as two discrete transactions, each working on a specific porti ...

  9. 剑指offer——链表相关问题总结

    首先统一链表的数据结构为: struct ListNode { int val; struct ListNode *next; ListNode(int x) :val(x), next(NULL) ...

  10. Angular 学习笔记——ng-animate

    <!DOCTYPE HTML> <html ng-app="myApp"> <head> <meta http-equiv="C ...