ZOJ - 3537 Cake (凸包+区间DP+最优三角剖分)
Description
You want to hold a party. Here's a polygon-shaped cake on the table. You'd like to cut the cake into several triangle-shaped parts for the invited comers. You have a knife to cut. The trace of each cut is a line segment, whose two endpoints are two vertices
of the polygon. Within the polygon, any two cuts ought to be disjoint. Of course, the situation that only the endpoints of two segments intersect is allowed.
The cake's considered as a coordinate system. You have known the coordinates of vexteces. Each cut has a cost related to the coordinate of the vertex, whose formula is
costi, j = |xi + xj| * |yi + yj| % p. You want to calculate the minimum cost.
NOTICE: input assures that NO three adjacent vertices on the polygon-shaped cake are in a line. And the cake is not always a convex.
Input
There're multiple cases. There's a blank line between two cases. The first line of each case contains two integers,
N and p (3 ≤ N, p ≤ 300), indicating the number of vertices. Each line of the following
N lines contains two integers, x and y (-10000 ≤
x, y ≤ 10000), indicating the coordinate of a vertex. You have known that no two vertices are in the same coordinate.
Output
If the cake is not convex polygon-shaped, output "I can't cut.". Otherwise, output the minimum cost.
Sample Input
3 3
0 0
1 1
0 2
Sample Output
0
题意:给定n个点的坐标,先问这些点能否组成一个凸包,假设是凸包,问用不相交的线来切这个凸包使得凸包仅仅由三角形组成。依据costi, j = |xi + xj| * |yi + yj| % p
算切线的费用,问最少的分割费用。 思路:第一次做凸包,抄模板,ZeroClock 图画的非常好,就不反复了#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 1005;
const int inf = 1000000000; struct point {
int x, y;
} p[maxn], save[maxn], tmp[maxn];
int cost[maxn][maxn], n, m;
int dp[maxn][maxn]; int dis(point p1, point p2, point p0) {
return (p1.x-p0.x) * (p2.y-p0.y) - (p2.x-p0.x) * (p1.y-p0.y);
} bool cmp(const point &a, const point &b) {
if (a.y == b.y) return a.x < b.x;
return a.y < b.y;
} int Graham(point *p,int n) {
sort(p,p + n,cmp);
save[0] = p[0];
save[1] = p[1];
int top = 1;
for (int i = 0;i < n; i++) {
while (top && dis(save[top],p[i],save[top-1]) >= 0) top--;
save[++top] = p[i];
} int mid = top;
for(int i = n - 2; i >= 0; i--) {
while (top > mid && dis(save[top],p[i],save[top-1])>=0) top--;
save[++top]=p[i];
}
return top;
} int Count(point a, point b) {
return (abs(a.x+b.x) * abs(a.y+b.y)) % m;
} int main() {
while (scanf("%d%d",&n,&m) != EOF) {
for (int i = 0; i < n; ++i)
scanf("%d%d",&p[i].x,&p[i].y); int tot = Graham(p,n); //求凸包
if (tot != n) printf("I can't cut.\n");
else {
memset(cost,0,sizeof(cost));
for (int i = 0; i < n; ++i)
for (int j = i + 2; j < n; ++j)
cost[i][j] = cost[j][i] = Count(save[i],save[j]); for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j)
dp[i][j] = inf;
dp[i][(i+1)%n] = 0;
} for (int i = n - 3; i >= 0; i--)
for (int j = i + 2; j < n; j++)
for (int k = i + 1; k <= j - 1; k++)
dp[i][j] = min(dp[i][j], dp[i][k]+dp[k][j]+cost[i][k]+cost[k][j]);
printf("%d\n",dp[0][n-1]);
}
}
return 0;
}
ZOJ - 3537 Cake (凸包+区间DP+最优三角剖分)的更多相关文章
- ZOJ 3537 Cake (区间DP,三角形剖分)
题意: 给出平面直角坐标系上的n个点的坐标,表示一个多边形蛋糕,先判断是否是凸多边形,若否,输出"I can't cut.".若是,则对这个蛋糕进行3角形剖分,切n-3次变成n-2 ...
- ZOJ 3537 (凸包 + 区间DP)(UNFINISHED)
#include "Head.cpp" const int N = 10007; int n, m; struct Point{ int x,y; bool operator &l ...
- ZOJ 3537 Cake(凸包判定+区间DP)
Cake Time Limit: 1 Second Memory Limit: 32768 KB You want to hold a party. Here's a polygon-shaped c ...
- UVA - 1331 Minimax Triangulation (区间dp)(最优三角剖分)
题目链接 把一个多边形剖分成若干个三角形,使得其中最大的三角形面积最小. 比较经典的一道dp问题 设dp[l][r]为把多边形[l,r]剖分成三角形的最大三角形面积中的最小值,则$dp[l][r]=m ...
- zoj 3537 Cake 区间DP (好题)
题意:切一个凸边行,如果不是凸包直接输出.然后输出最小代价的切割费用,把凸包都切割成三角形. 先判断是否是凸包,然后用三角形优化. dp[i][j]=min(dp[i][j],dp[i][k]+dp[ ...
- ZOJ 3537 Cake(凸包+区间DP)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3537 题目大意:给出一些点表示多边形顶点的位置,如果不是凸多边形 ...
- ZOJ 3537 Cake 求凸包 区间DP
题意:给出一些点表示多边形顶点的位置(如果多边形是凹多边形就不能切),切多边形时每次只能在顶点和顶点间切,每切一次都有相应的代价.现在已经给出计算代价的公式,问把多边形切成最多个不相交三角形的最小代价 ...
- zoj 3537 Cake (凸包确定+间隔dp)
Cake Time Limit: 1 Second Memory Limit: 32768 KB You want to hold a party. Here's a polygon-sha ...
- zoj 3537 Cake(区间dp)
这道题目是经典的凸包的最优三角剖分,不过这个题目给的可能不是凸包,所以要提前判定一下是否为凸包,如果是凸包的话才能继续剖分,dp[i][j]表示已经排好序的凸包上的点i->j上被分割成一个个小三 ...
随机推荐
- 经典的排序算法java实现版
/** * * @author yuzhiping * @version 1.0 * 功能说明:计算机领域经典的算法 * */ public class sortAlgorithm<T exte ...
- iOS uitableivewCell 下划线顶格
- (void)tableView:(UITableView *)tableView willDisplayCell:(UITableViewCell *)cell forRowAtIndexPath ...
- 【VBA】复制单元格数据有效性
单元格内设置了有效性,通过VBA怎么去复制呢?代码如下: Public Sub 复制单元格批注() Dim range1 As range Dim range2 As range '清除G列 Colu ...
- mysql导出查询结果到文档
其实挺简单,就一个命令 select * from my_table into outfile '/tmp/abc.xls'; 然后就是ftp把文件弄回本地了.我的是程序自动放到C:\下 另外,还 ...
- beyond compare 软件学习
beyond compare 软件可以实现基本的文件对比,这点和 NotePad++ 的功能一样.但是在实现文件夹与文件夹之间的对比的话,就要使用 beyond compare 进行对比,效率是成倍提 ...
- ListView知识点汇总(9.2)
1 最为基础的listview: http://www.cnblogs.com/allin/archive/2010/05/11/1732200.html http://blog.csdn.net/h ...
- Android的View 事件传递
欢迎转载,请附出处: http://blog.csdn.net/as02446418/article/details/47422891 1.基础知识 (1) 全部 Touch 事件都被封装成了 Mot ...
- TouchSlide - 大话主席
http://www.superslide2.com/TouchSlide/downLoad.html 首 页如何使用查看参数案例演示下载页面交流反馈SuperSlide TouchSlide - ...
- nodejs 学习资料大全
1.blog学习篇 http://blog.fens.me/series-nodejs/ 从零开始nodejs系列文章
- iOS tableView高度缓存
tableView计算完高度后,把高度缓存起来,避免下次重复计算,以减少不必要的消耗 // declare cellHeightsDictionary NSMutableDictionary *cel ...