上片博文总结出了u-boot的工作流程,今天我们来分析,u-boot的两个比较重要的内容

1.        U-boot命令的实现

2.        U-boot如何启动内核

命令实现

我们的u-boot可以解析输入的命令,比如print、setenv、saveenv等命令,我们下来对其的实现进行分析。

我们昨天分析到BL2最后停在了main_loop处,那么我们输入的命令肯定也是在这个函数中实现的,我们找到该函数,在main_loop函数中run_command函数很容易引起我们的关注,跳到该函数进行分析,在该函数中有下面几个比较重要的点

1.        从注释我们很容易知道这段代码是在对命令进行分离,并且u-boot支持’;’分离命令。

         /*
* Find separator, or string end
* Allow simple escape of ';' by writing "\;"
*/
for (inquotes = , sep = str; *sep; sep++) {
if ((*sep=='\'') &&
(*(sep-) != '\\'))
inquotes=!inquotes; if (!inquotes &&
(*sep == ';') && /* separator */
( sep != str) && /* past string start */
(*(sep-) != '\\')) /* and NOT escaped */
break;
}

2.        分离参数

         /* Extract arguments */
if ((argc = parse_line (finaltoken, argv)) == ) {
rc = -; /* no command at all */
continue;
}

3.        用第一个参数argv[0]在命令列表中寻找对应的命令,并返回一个cmd_tbl_t类型的实例。我们可以猜到这个结构体应该保函了有关命令的一系列内容。

 /* Look up command in command table */
if ((cmdtp = find_cmd(argv[])) == NULL) {
printf ("Unknown command '%s' - try 'help'\n", argv[]);
rc = -; /* give up after bad command */
continue;
}

n  我们先看find_cmd,通过代码跟踪我们会在find_cmd_tbl函数中找到核心代码

 for (cmdtp = table;
cmdtp != table + table_len;
cmdtp++) {
if (strncmp (cmd, cmdtp->name, len) == ) {
if (len == strlen (cmdtp->name))
return cmdtp; /* full match */ cmdtp_temp = cmdtp; /* abbreviated command ? */
n_found++;
}
}

通过上面代码我们知道了其查找方法,但是相信很多人和我一样很疑惑这个命令表到底在什么地方。

按照我们对上面代码的阅读,和猜测我们可以知道这个表的开始地址是table,我们可以轻松的找到table的来源。

 cmd_tbl_t *find_cmd (const char *cmd)
{
int len = &__u_boot_cmd_end - &__u_boot_cmd_start;
return find_cmd_tbl(cmd, &__u_boot_cmd_start, len);
}

通过上面代码我们知道table等于__u_boot_cmd_start,通过全局搜索,我们找到这个地址的来源是\arch\arm\cpu\armv7\u-boot.lds

     __u_boot_cmd_start = .;
.u_boot_cmd : { *(.u_boot_cmd) }
__u_boot_cmd_end = .;

在__u_boot_cmd_start和__u_boot_cmd_end之间放了一个.u_boot_cmd段,我们再对这个段名进行搜索找到了下面的宏

 #define Struct_Section  __attribute__ ((unused,section (".u_boot_cmd")))//强制设置段属性为.u_boot_cmd

其肯定通过该宏又定义了什么东西,再经过搜索我们找到以下内容

 #define U_BOOT_CMD_COMPLETE(name,maxargs,rep,cmd,usage,help,comp) \
cmd_tbl_t __u_boot_cmd_##name Struct_Section = \
U_BOOT_CMD_MKENT_COMPLETE(name,maxargs,rep,cmd,usage,help,comp)

其又定义了一个宏,通过对宏的阅读我们可以知道,通过U_BOOT_CMD_COMPLETE这个宏可以定义一个cmd_tbl_t类型的结构体,并且将该结构体的段属性强制设置为.u_boot_cmd,再对这个宏搜索,找到的只有几个命令,完全对不上,但是我们又找到下面的宏

 #define U_BOOT_CMD(name,maxargs,rep,cmd,usage,help) \
U_BOOT_CMD_COMPLETE(name,maxargs,rep,cmd,usage,help,NULL)

通过对U_BOOT_CMD的搜索我们找到了大量的命令定义。

至此我们可以完全清楚了这个命令表示怎么来的,其是通过U_BOOT_CMD这样一个宏去定义命令。随便可以找到例子:

 U_BOOT_CMD(
help, CONFIG_SYS_MAXARGS, , do_help,
"print command description/usage",
"\n"
" - print brief description of all commands\n"
"help command ...\n"
" - print detailed usage of 'command'"
);

n  再来看cmd_tbl_t结构体,其中保函了命令名,最大参数,以及对应函数等内容。

 struct cmd_tbl_s {
char *name; /* Command Name */
int maxargs; /* maximum number of arguments */
int repeatable; /* autorepeat allowed? */
/* Implementation function */
int (*cmd)(struct cmd_tbl_s *, int, int, char * const []);
char *usage; /* Usage message (short) */
#ifdef CONFIG_SYS_LONGHELP
char *help; /* Help message (long) */
#endif
#ifdef CONFIG_AUTO_COMPLETE
/* do auto completion on the arguments */
int (*complete)(int argc, char * const argv[], char last_char, int maxv, char *cmdv[]);
#endif
};

至此我们可以通过上面的内容实现我们自己的简单u-boot命令,下面是我实现的hello命令

 #include <common.h>
#include <command.h> int do_hello(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
{
printf("hello u-boot");
return ;
} U_BOOT_CMD(
hello, CONFIG_SYS_MAXARGS, , do_hello,
"print hello",/*短帮助信息*/
"\n hello cmd ............"//长帮帮助信息
);

加入上面内容,并且修改common目录下的makefile,然后重新编译u-boot,就会完成我们自己的u-boot命令,至此我们的u-boot命令实现分析完毕。

启动内核

我们的u-boot可以通过nand、tftp等方式,将我们的内核加载至内存,对于这个过程今天就不重点去分析了,今天我们重点分析从内存中如何启动内核,我们都知道启动内核的时候要用到bootm命令,按照我们上面分析命令实现的经验,可以猜出其必然会去运行do_bootm函数。下面我们主要分析这个函数的实现。

我们的bootm只能启动uImage,然而uImage = zImage(真正的内核) + 头信息。所以我们首先来看看头信息:

typedef struct image_header {
uint32_t ih_magic; /* Image Header Magic Number */
uint32_t ih_hcrc; /* Image Header CRC Checksum */
uint32_t ih_time; /* Image Creation Timestamp */
uint32_t ih_size; /* Image Data Size */
uint32_t ih_load; /* Data Load Address */
uint32_t ih_ep; /* Entry Point Address */
uint32_t ih_dcrc; /* Image Data CRC Checksum */
uint8_t ih_os; /* Operating System */
uint8_t ih_arch; /* CPU architecture */
uint8_t ih_type; /* Image Type */
uint8_t ih_comp; /* Compression Type */
uint8_t ih_name[IH_NMLEN]; /* Image Name */
} image_header_t;

这里面存放了大量的内核信息,我们也可以找到do_bootm中用这些信息进行内核的校验,加载地址的校验等工作。

假设我们启动的是linux(u-boot支持多种系统启动,下面代码列出),我们的u-boot会执行到do_bootm_linux函数

 static boot_os_fn *boot_os[] = {
#ifdef CONFIG_BOOTM_LINUX
[IH_OS_LINUX] = do_bootm_linux,
#endif
#ifdef CONFIG_BOOTM_NETBSD
[IH_OS_NETBSD] = do_bootm_netbsd,
#endif
#ifdef CONFIG_LYNXKDI
[IH_OS_LYNXOS] = do_bootm_lynxkdi,
#endif
#ifdef CONFIG_BOOTM_RTEMS
[IH_OS_RTEMS] = do_bootm_rtems,
#endif
#if defined(CONFIG_BOOTM_OSE)
[IH_OS_OSE] = do_bootm_ose,
#endif
#if defined(CONFIG_CMD_ELF)
[IH_OS_VXWORKS] = do_bootm_vxworks,
[IH_OS_QNX] = do_bootm_qnxelf,
#endif
#ifdef CONFIG_INTEGRITY
[IH_OS_INTEGRITY] = do_bootm_integrity,
#endif
};

下面我们来分析do_bootm_linux函数主要有以下内容

a)        和内核进行交接工作,为内核设置启动参数

#if defined (CONFIG_SETUP_MEMORY_TAGS) || \
defined (CONFIG_CMDLINE_TAG) || \
defined (CONFIG_INITRD_TAG) || \
defined (CONFIG_SERIAL_TAG) || \
defined (CONFIG_REVISION_TAG)
setup_start_tag (bd);
#ifdef CONFIG_SERIAL_TAG
setup_serial_tag (&params);
#endif
#ifdef CONFIG_REVISION_TAG
setup_revision_tag (&params);
#endif
#ifdef CONFIG_SETUP_MEMORY_TAGS
setup_memory_tags (bd);
#endif
#ifdef CONFIG_CMDLINE_TAG
setup_commandline_tag (bd, commandline);
#endif
#ifdef CONFIG_INITRD_TAG
if (images->rd_start && images->rd_end)
setup_initrd_tag (bd, images->rd_start, images->rd_end);
#endif
setup_end_tag(bd);
#endif

这些代码主要是将参数,按照固定的格式写到固定的地方。内核启动后将会去这个地址读取参数。

b)        跳到入口地址,启动内核

 kernel_entry = (void (*)(int, int, uint))images->ep;
kernel_entry(, machid, bd->bi_boot_params);

machid:我们的机器ID

bd->bi_boot_params:刚才提到的参数的地址

至此我们今天的工作全部结束。

u-boot分析(三)---boot命令实现以及内核的启动的更多相关文章

  1. [ipsec][strongswan] strongswan源码分析-- (三) xfrm与strongswan内核接口分析

    目录 strongwan sa分析(三) xfrm与strongswan内核接口分析 1. strongswan的实现 2. 交互机制 4. xfrm的消息通信的实现 strongwan sa分析(三 ...

  2. spring boot / cloud (三) 集成springfox-swagger2构建在线API文档

    spring boot / cloud (三) 集成springfox-swagger2构建在线API文档 前言 不能同步更新API文档会有什么问题? 理想情况下,为所开发的服务编写接口文档,能提高与 ...

  3. Spring Boot 2 (三):Spring Boot 2 相关开源软件

    Spring Boot 2 (三):Spring Boot 2 相关开源软件 一.awesome-spring-boot Spring Boot 中文索引,这是一个专门收集 Spring Boot 相 ...

  4. Spring Boot 第三弹,一文带你了解日志如何配置?

    前言 日志通常不会在需求阶段作为一个功能单独提出来,也不会在产品方案中看到它的细节.但是,这丝毫不影响它在任何一个系统中的重要的地位. 今天就来介绍一下Spring Boot中的日志如何配置. Spr ...

  5. Linux内核及分析 第三周 Linux内核的启动过程

    实验过程: 打开shell终端,执行以下命令: cd LinuxKernel/ qemu -kernel linux-3.18.6/arch/x86/boot/bzImage-initrd rootf ...

  6. Linux内核分析 实验三:跟踪分析Linux内核的启动过程

    贺邦 + 原创作品转载请注明出处 + <Linux内核分析>MOOC课程 http://mooc.study.163.com/course/USTC-1000029000 一. 实验过程 ...

  7. Linux内核设计第三周学习总结 跟踪分析Linux内核的启动过程

    陈巧然 原创作品 转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 实验步骤 登陆实验楼虚 ...

  8. Linux第三周——跟踪分析内核的启动过程

    跟踪分析内核的启动过程实验 张潇月<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 这周主要学习的是对内核 ...

  9. 第1阶段——uboot分析之查找命令run_command函数和命令定义过程(6)

    本节主要学习,run_command函数命令查找过程,命令生成过程 1.run_command函数命令查找过程分析:在u-boot界面中(main_loop();位于u-boot-1.1.6/comm ...

随机推荐

  1. CF912E Prime Gift 数学

    Opposite to Grisha's nice behavior, Oleg, though he has an entire year at his disposal, didn't manag ...

  2. kuangbin专题十二 HDU1078 FatMouse and Cheese )(dp + dfs 记忆化搜索)

    FatMouse and Cheese Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Othe ...

  3. Linux系统之ssh命令

    ssh命令用于远程登录上Linux主机. 常用格式:ssh [-l login_name] [-p port] [user@]hostname更详细的可以用ssh -h查看. 不指定用户: ssh 1 ...

  4. sharepoint_study_12

    描述:SharePoint新建Web应用程序时提示如下错误: 解决: 1. Go to IIS 2. Select the DefaultAppPool and Go to the Advanced ...

  5. jq ajax超时设置

    var ajaxTimeoutTest = $.ajax({ url:'', //请求的URL timeout : 1000, //超时时间设置,单位毫秒 type : 'get', //请求方式,g ...

  6. SpEL

    Spriing boot stater中根据配置文件中的条件 生成相应的bean, 以适应不同场景 @ConditionalOnExpression中使用SpEl,  支持各种条件表达式 String ...

  7. 缓存方案:本地guavaCache, 远程redis?

    线程内部缓存:a. 局部变量HashMap, 方法间传递  b. 使用ThreadLocal 本地缓存:单jvm内共享 可以使用(Concurrent)HashMap自己实现,也可以使用GuavaCa ...

  8. redis的三种启动方式,个人常用第二种

    redis的启动方式1.直接启动  进入redis根目录,执行命令:  #加上‘&’号使redis以后台程序方式运行 1 ./redis-server & 2.通过指定配置文件启动  ...

  9. Vim Plugins for Linux

    Usage 1.Set up Vundle: git clone https://github.com/VundleVim/Vundle.vim.git ~/.vim/bundle/Vundle.vi ...

  10. RTT学习之BSP

    ---恢复内容开始--- 一 根据相近型号的demo BSP进行修改制作自己的BSP https://github.com/RT-Thread/rt-thread/blob/master/bsp/st ...