【OpenJudge3531】【背包DP】【膜法交配律】判断整除
判断整除
总时间限制: 1000ms 内存限制: 65536kB
【描述】
一个给定的正整数序列,在每个数之前都插入+号或-号后计算它们的和。比如序列:1、2、4共有8种可能的序列:
(+1) + (+2) + (+4) = 7
(+1) + (+2) + (-4) = -1
(+1) + (-2) + (+4) = 3
(+1) + (-2) + (-4) = -5
(-1) + (+2) + (+4) = 5
(-1) + (+2) + (-4) = -3
(-1) + (-2) + (+4) = 1
(-1) + (-2) + (-4) = -7
所有结果中至少有一个可被整数k整除,我们则称此正整数序列可被k整除。例如上述序列可以被3、5、7整除,而不能被2、4、6、8……整除。注意:0、-3、-6、-9……都可以认为是3的倍数。
输入输入的第一行包含两个数:N(2 < N < 10000)和k(2 < k< 100),其中N代表一共有N个数,k代表被除数。第二行给出序列中的N个整数,这些整数的取值范围都0到10000之间(可能重复)。输出如果此正整数序列可被k整除,则输出YES,否则输出NO。(注意:都是大写字母)
【样例输入】
3 2
1 2 4
【样例输出】
NO
【Solution】
首先,膜法交配律,其实就是模法分配律,即(a+b+c)%k=(a%k+b%k+c%k)%k。所以预处理输入数据全部模k。
dp[i][j]表示到第i个数模k是否有可能等于j。转移方程为dp[i+1][(j+data[i]-100)%k+100]=dp[i][j] (dp[i][j]==1) , dp[i+1][(j-data[i]-100)%k+100]=dp[i][j] (dp[i][j]==1)。
AC代码:
#include <cstdio>
int N,K;
int data[];
int dp[][];
int main(){
scanf("%d%d",&N,&K); for(int i=;i<=N;++i) scanf("%d",&data[i]);
data[]%=K; dp[][+data[]]=dp[][-data[]]=;
for(int i=;i<=N;++i){
data[i]%=K;
for(int j=;j<=K+;++j)
if(dp[i][j]){
dp[i+][(j+data[i]-)%K+]=;
dp[i+][(j-data[i]-)%K+]|=dp[i][j];
}
}
if(dp[N+][]) printf("YES");
else printf("NO");
return ;
}
【OpenJudge3531】【背包DP】【膜法交配律】判断整除的更多相关文章
- BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )
题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...
- 树形DP和状压DP和背包DP
树形DP和状压DP和背包DP 树形\(DP\)和状压\(DP\)虽然在\(NOIp\)中考的不多,但是仍然是一个比较常用的算法,因此学好这两个\(DP\)也是很重要的.而背包\(DP\)虽然以前考的次 ...
- 【BZOJ1004】【HNOI2008】Cards 群论 置换 burnside引理 背包DP
题目描述 有\(n\)张卡牌,要求你给这些卡牌染上RGB三种颜色,\(r\)张红色,\(g\)张绿色,\(b\)张蓝色. 还有\(m\)种洗牌方法,每种洗牌方法是一种置换.保证任意多次洗牌都可用这\( ...
- UOJ #17. 【NOIP2014】飞扬的小鸟 背包DP
#17. [NOIP2014]飞扬的小鸟 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4902 Solved: 1879 题目连接 http:// ...
- 【bzoj1004】[HNOI2008]Cards Burnside引理+背包dp
题目描述 用三种颜色染一个长度为 $n=Sr+Sb+Sg$ 序列,要求三种颜色分别有 $Sr,Sb,Sg$ 个.给出 $m$ 个置换,保证这 $m$ 个置换和置换 ${1,2,3,...,n\choo ...
- [luogu3767]膜法
[luogu3767]膜法 luogu 神仙题 线段树分治+带权并查集 把每个操作看成点 首先这个操作的结构是一棵树 你发现每个点的对它的子树产生影响 我们可以想到用dfn序把它转成一段区间用线段树分 ...
- 【bzoj5018】[Snoi2017]英雄联盟 背包dp
题目描述 正在上大学的小皮球热爱英雄联盟这款游戏,而且打的很菜,被网友们戏称为「小学生」.现在,小皮球终于受不了网友们的嘲讽,决定变强了,他变强的方法就是:买皮肤!小皮球只会玩N个英雄,因此,他也只准 ...
- 【bzoj4753】[Jsoi2016]最佳团体 分数规划+树形背包dp
题目描述 JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人都由一位编号比他小的候选人Ri推荐.如果Ri=0则说明这个候选人是JYY自己看上的.为了 ...
- 算法复习——背包dp
1.01背包 二维递推式子: 代码: ;i<=n;i++) ;x--) ][x-w[i]]+c[i],f[i-][x]); ][x]; printf("%d",f[n][m] ...
随机推荐
- Python学习-day20 django进阶篇
Model 到目前为止,当我们的程序涉及到数据库相关操作时,我们一般都会这么搞: 创建数据库,设计表结构和字段 使用 MySQLdb 来连接数据库,并编写数据访问层代码 业务逻辑层去调用数据访问层执行 ...
- Nginx下配置codeigniter框架
原来在winserver+Apache环境下工作良好的一个微信公众号后台迁移到阿里云(环境:Ubuntu 64位 | PHP5.4 | Nginx1.6)下却频出 404,403,只能访问CI rou ...
- Learn the shell
learn the shell what is the shell? when we speak of the command line,we are really to the shell.Actu ...
- ajax-高设3
ajax 1.XHR Ajax 技术的核心是 XMLHttpRequest 对象(简称 XHR),这是由微软首先引入的一个特性,其他浏览器提供商后来都提供了相同的实现.在 XHR 出现之前,Ajax ...
- Dictionary & Chinese
Dictionary & Chinese DC & dict https://github.com/zollero/simplified-chinese https://github. ...
- 关于ECDSA/ECC(密钥加密传输)和ECDSA/ECDH(密钥磋商)
关于ECDSA/ECC(密钥加密传输)和ECDSA/ECDH(密钥磋商) 来源: https://blog.csdn.net/xueyepiaoling/article/details/6243337 ...
- Hadoop入门(五) Hadoop2.7.5集群分布式环境搭建
本文接上文内容继续: server01 192.168.8.118 jdk.www.fengshen157.com/ hadoop NameNode.DFSZKFailoverController(z ...
- 洛谷 P1503 鬼子进村 解题报告
P1503 鬼子进村 题目背景 小卡正在新家的客厅中看电视.电视里正在播放放了千八百次依旧重播的<亮剑>,剧中李云龙带领的独立团在一个县城遇到了一个鬼子小队,于是独立团与鬼子展开游击战. ...
- codeforces ~ 1004 C Sonya and Robots (dp)
C. Sonya and Robots time limit per test 1 second memory limit per test 256 megabytes input standard ...
- BZOJ 4078: [Wf2014]Metal Processing Plant
4078: [Wf2014]Metal Processing Plant Time Limit: 100 Sec Memory Limit: 128 MBSubmit: 86 Solved: 20 ...