SparkMLlib分类算法之逻辑回归算法

(一),逻辑回归算法的概念参考网址:http://blog.csdn.net/sinat_33761963/article/details/51693836

    逻辑回归与线性回归类似,但它不属于回归分析家族(主要为二分类),而属于分类家族,差异主要在于变量不同,因此其解法与生成曲线也不尽相同。逻辑回归是无监督学习的一个重要算法,对某些数据与事物的归属(分到哪个类别)及可能性(分到某一类别的概率)进行评估。

    

(二),SparkMLlib逻辑回归应用

1,数据集的选择:http://www.kaggle.com/c/stumbleupon/data 中的(train.txt和test.txt)

2,数据集描述:关于涉及网页中推荐的页面是短暂(短暂存在,很快就不流行了)还是长久(长时间流行)的分类

3,数据预处理及获取训练集和测试集

val orig_file=sc.textFile("train_nohead.tsv")
//println(orig_file.first())
val data_file=orig_file.map(_.split("\t")).map{
r =>
val trimmed =r.map(_.replace("\"",""))
val lable=trimmed(r.length-1).toDouble
val feature=trimmed.slice(4,r.length-1).map(d => if(d=="?")0.0
else d.toDouble)
LabeledPoint(lable,Vectors.dense(feature))
}.randomSplit(Array(0.7,0.3),11L)
val data_train=data_file(0)//训练集
val data_test=data_file(1)//测试集

4,逻辑回归模型训练及模型评价

val model_log=new LogisticRegressionWithLBFGS().setNumClasses(2).run(data_train)
/*
有两种最优化算法可以求解逻辑回归问题并求出最优参数:mini-batch gradient descent(梯度下降法),L-BFGS法。我们更推荐使用L-BFGS,因为它能更快聚合,而且现在spark2.1.0已经放弃LogisticRegressionWithLSGD()模式了*/
/*性能评估:使用精确度,PR曲线,AOC曲线*/
val predictionAndLabels=data_test.map(point =>
(model_log.predict(point.features),point.label)
)
val metricsLG=new MulticlassMetrics(predictionAndLabels)//0.6079335793357934
val metrics=Seq(model_log).map{
model =>
val socreAndLabels=data_test.map {
point => (model.predict(point.features), point.label)
}
val metrics=new BinaryClassificationMetrics(socreAndLabels)
(model.getClass.getSimpleName,metrics.areaUnderPR(),metrics.areaUnderROC())
}
val allMetrics = metrics
allMetrics.foreach{ case (m, pr, roc) =>
println(f"$m, Area under PR: ${pr * 100.0}%2.4f%%, Area under ROC: ${roc * 100.0}%2.4f%%")
}
/*LogisticRegressionModel, Area under PR: 73.1104%, Area under ROC: 60.4200%*/

5,模型优化

  特征标准化处理

val orig_file=sc.textFile("train_nohead.tsv")
//println(orig_file.first())
val data_file=orig_file.map(_.split("\t")).map{
r =>
val trimmed =r.map(_.replace("\"",""))
val lable=trimmed(r.length-1).toDouble
val feature=trimmed.slice(4,r.length-1).map(d => if(d=="?")0.0
else d.toDouble)
LabeledPoint(lable,Vectors.dense(feature))
}
/*特征标准化优化*/
val vectors=data_file.map(x =>x.features)
val rows=new RowMatrix(vectors)
println(rows.computeColumnSummaryStatistics().variance)//每列的方差
val scaler=new StandardScaler(withMean=true,withStd=true).fit(vectors)//标准化
val scaled_data=data_file.map(point => LabeledPoint(point.label,scaler.transform(point.features)))
.randomSplit(Array(0.7,0.3),11L)
val data_train=scaled_data(0)
val data_test=scaled_data(1)
/*训练逻辑回归模型*/
val model_log=new LogisticRegressionWithLBFGS().setNumClasses(2).run(data_train)
/*在使用模型做预测时,如何知道预测到底好不好呢?换句话说,应该知道怎么评估模型性能。
通常在二分类中使用的评估方法包括:预测正确率和错误率、准确率和召回率、准确率  召回率
曲线下方的面积、 ROC 曲线、 ROC 曲线下的面积和 F-Measure*/
val predictionAndLabels=data_test.map(point =>
(model_log.predict(point.features),point.label)
)
val metricsLG=new MulticlassMetrics(predictionAndLabels)//精确度:0.6236162361623616
val metrics=Seq(model_log).map{
model =>
val socreAndLabels=data_test.map {
point => (model.predict(point.features), point.label)
}
val metrics=new BinaryClassificationMetrics(socreAndLabels)
(model.getClass.getSimpleName,metrics.areaUnderPR(),metrics.areaUnderROC())
}
val allMetrics = metrics
allMetrics.foreach{ case (m, pr, roc) =>
println(f"$m, Area under PR: ${pr * 100.0}%2.4f%%, Area under ROC: ${roc * 100.0}%2.4f%%")
}
/*LogisticRegressionModel, Area under PR: 74.1103%, Area under ROC: 62.0064%*/

6,总结

  1,如何能提高更明显的精度。。。。。

  2,对逻辑回归的认识还不够。。。。

SparkMLlib分类算法之逻辑回归算法的更多相关文章

  1. SparkMLlib学习分类算法之逻辑回归算法

    SparkMLlib学习分类算法之逻辑回归算法 (一),逻辑回归算法的概念(参考网址:http://blog.csdn.net/sinat_33761963/article/details/51693 ...

  2. 分类算法之逻辑回归(Logistic Regression

    分类算法之逻辑回归(Logistic Regression) 1.二分类问题 现在有一家医院,想要对病人的病情进行分析,其中有一项就是关于良性\恶性肿瘤的判断,现在有一批数据集是关于肿瘤大小的,任务就 ...

  3. sklearn调用逻辑回归算法

    1.逻辑回归算法即可以看做是回归算法,也可以看作是分类算法,通常用来解决分类问题,主要是二分类问题,对于多分类问题并不适合,也可以通过一定的技巧变形来间接解决. 2.决策边界是指不同分类结果之间的边界 ...

  4. 逻辑回归算法的原理及实现(LR)

    Logistic回归虽然名字叫"回归" ,但却是一种分类学习方法.使用场景大概有两个:第一用来预测,第二寻找因变量的影响因素.逻辑回归(Logistic Regression, L ...

  5. 一小部分机器学习算法小结: 优化算法、逻辑回归、支持向量机、决策树、集成算法、Word2Vec等

    优化算法 先导知识:泰勒公式 \[ f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n \] 一阶泰勒展开: \[ f(x)\approx ...

  6. Spark机器学习(2):逻辑回归算法

    逻辑回归本质上也是一种线性回归,和普通线性回归不同的是,普通线性回归特征到结果输出的是连续值,而逻辑回归增加了一个函数g(z),能够把连续值映射到0或者1. MLLib的逻辑回归类有两个:Logist ...

  7. 《BI那点儿事》Microsoft 逻辑回归算法——预测股票的涨跌

    数据准备:一组股票历史成交数据(股票代码:601106 中国一重),起止日期:2011-01-04至今,其中变量有“开盘”.“最高”.“最低”.“收盘”.“总手”.“金额”.“涨跌”等 UPDATE ...

  8. Python实现机器学习算法:逻辑回归

    import numpy as np import matplotlib.pyplot as plt from sklearn.datasets.samples_generator import ma ...

  9. 每日一个机器学习算法——LR(逻辑回归)

    本系列文章用于汇集知识点,查漏补缺,面试找工作之用.数学公式较多,解释较少. 1.假设 2.sigmoid函数: 3.假设的含义: 4.性质: 5.找一个凸损失函数 6.可由最大似然估计推导出 单个样 ...

随机推荐

  1. POJ2374 Fence Obstacle Course 【线段树】

    题目链接 POJ2374 题解 题意: 给出\(n\)个平行于\(x\)轴的栅栏,求从一侧栅栏的某个位置出发,绕过所有栅栏到达另一侧\(x = 0\)位置的最短水平距离 往上说都是线段树优化dp 我写 ...

  2. 洛谷 P3437 [POI2006]TET-Tetris 3D 解题报告

    P3437 [POI2006]TET-Tetris 3D 题目描述 The authors of the game "Tetris" have decided to make a ...

  3. Codeforces Round #324 (Div. 2) D

    D. Dima and Lisa time limit per test 1 second memory limit per test 256 megabytes input standard inp ...

  4. Java中同一个类中不同的synchronized方法是否可以并发执行?

    答案是: 不可以,因为都是获取到对象本身的锁. 多个线程访问同一个类的synchronized方法时, 都是串行执行的 ! 就算有多个cpu也不例外 ! synchronized方法使用了类java的 ...

  5. [ZJOI2008]树的统计——树链剖分

    本题是一个树链剖分裸题,由于比较菜,老是RE,后来发现是因为使用了全局变量. /************************************************************ ...

  6. 移动web开发问题和优化小结

    之前在微信公众号上看到的一篇文章,直接给拷过来了....原文链接http://mp.weixin.qq.com/s/0LwTz-Mw2WumSztIrHucdQ 2.Meta标签 页面在手机上显示时, ...

  7. (转载)管道命令和xargs的区别(经典解释)

    一直弄不懂,管道不就是把前一个命令的结果作为参数给下一个命令吗,那在 | 后面加不加xargs有什么区别 NewUserFF 写道:懒蜗牛Gentoo 写道:管道是实现“将前面的标准输出作为后面的标准 ...

  8. 第十二届北航程序设计竞赛决赛网络同步赛 B题 前前前世(数论推导 + DP)

    题目链接  2016 BUAA-Final Problem B 考虑一对可行的点$(x, y)$ 根据题意,设$x = ak + 1,y = bk + 1$ 又因为$x$是$y$的祖先的祖先的祖先,所 ...

  9. BZOJ 4589 Hard Nim(FWT加速DP)

    题目链接  Hard Nim 设$f[i][j]$表示前$i$个数结束后异或和为$j$的方案数 那么$f[i][j] = f[i-1][j$ $\hat{}$ $k]$,满足$k$为不大于$m$的质数 ...

  10. 由"软件是干什么的"引发的思考

            自工作以来,都只在进行模块的开发,很少站在整个项目的角度思考过.甚至,自己开发的软件,自己都没有去用过,包括开发的一些APP,都没有下载来认真体验过.思考过.却对自己手机上那些用过的A ...