SparkMLlib分类算法之逻辑回归算法

(一),逻辑回归算法的概念参考网址:http://blog.csdn.net/sinat_33761963/article/details/51693836

    逻辑回归与线性回归类似,但它不属于回归分析家族(主要为二分类),而属于分类家族,差异主要在于变量不同,因此其解法与生成曲线也不尽相同。逻辑回归是无监督学习的一个重要算法,对某些数据与事物的归属(分到哪个类别)及可能性(分到某一类别的概率)进行评估。

    

(二),SparkMLlib逻辑回归应用

1,数据集的选择:http://www.kaggle.com/c/stumbleupon/data 中的(train.txt和test.txt)

2,数据集描述:关于涉及网页中推荐的页面是短暂(短暂存在,很快就不流行了)还是长久(长时间流行)的分类

3,数据预处理及获取训练集和测试集

val orig_file=sc.textFile("train_nohead.tsv")
//println(orig_file.first())
val data_file=orig_file.map(_.split("\t")).map{
r =>
val trimmed =r.map(_.replace("\"",""))
val lable=trimmed(r.length-1).toDouble
val feature=trimmed.slice(4,r.length-1).map(d => if(d=="?")0.0
else d.toDouble)
LabeledPoint(lable,Vectors.dense(feature))
}.randomSplit(Array(0.7,0.3),11L)
val data_train=data_file(0)//训练集
val data_test=data_file(1)//测试集

4,逻辑回归模型训练及模型评价

val model_log=new LogisticRegressionWithLBFGS().setNumClasses(2).run(data_train)
/*
有两种最优化算法可以求解逻辑回归问题并求出最优参数:mini-batch gradient descent(梯度下降法),L-BFGS法。我们更推荐使用L-BFGS,因为它能更快聚合,而且现在spark2.1.0已经放弃LogisticRegressionWithLSGD()模式了*/
/*性能评估:使用精确度,PR曲线,AOC曲线*/
val predictionAndLabels=data_test.map(point =>
(model_log.predict(point.features),point.label)
)
val metricsLG=new MulticlassMetrics(predictionAndLabels)//0.6079335793357934
val metrics=Seq(model_log).map{
model =>
val socreAndLabels=data_test.map {
point => (model.predict(point.features), point.label)
}
val metrics=new BinaryClassificationMetrics(socreAndLabels)
(model.getClass.getSimpleName,metrics.areaUnderPR(),metrics.areaUnderROC())
}
val allMetrics = metrics
allMetrics.foreach{ case (m, pr, roc) =>
println(f"$m, Area under PR: ${pr * 100.0}%2.4f%%, Area under ROC: ${roc * 100.0}%2.4f%%")
}
/*LogisticRegressionModel, Area under PR: 73.1104%, Area under ROC: 60.4200%*/

5,模型优化

  特征标准化处理

val orig_file=sc.textFile("train_nohead.tsv")
//println(orig_file.first())
val data_file=orig_file.map(_.split("\t")).map{
r =>
val trimmed =r.map(_.replace("\"",""))
val lable=trimmed(r.length-1).toDouble
val feature=trimmed.slice(4,r.length-1).map(d => if(d=="?")0.0
else d.toDouble)
LabeledPoint(lable,Vectors.dense(feature))
}
/*特征标准化优化*/
val vectors=data_file.map(x =>x.features)
val rows=new RowMatrix(vectors)
println(rows.computeColumnSummaryStatistics().variance)//每列的方差
val scaler=new StandardScaler(withMean=true,withStd=true).fit(vectors)//标准化
val scaled_data=data_file.map(point => LabeledPoint(point.label,scaler.transform(point.features)))
.randomSplit(Array(0.7,0.3),11L)
val data_train=scaled_data(0)
val data_test=scaled_data(1)
/*训练逻辑回归模型*/
val model_log=new LogisticRegressionWithLBFGS().setNumClasses(2).run(data_train)
/*在使用模型做预测时,如何知道预测到底好不好呢?换句话说,应该知道怎么评估模型性能。
通常在二分类中使用的评估方法包括:预测正确率和错误率、准确率和召回率、准确率  召回率
曲线下方的面积、 ROC 曲线、 ROC 曲线下的面积和 F-Measure*/
val predictionAndLabels=data_test.map(point =>
(model_log.predict(point.features),point.label)
)
val metricsLG=new MulticlassMetrics(predictionAndLabels)//精确度:0.6236162361623616
val metrics=Seq(model_log).map{
model =>
val socreAndLabels=data_test.map {
point => (model.predict(point.features), point.label)
}
val metrics=new BinaryClassificationMetrics(socreAndLabels)
(model.getClass.getSimpleName,metrics.areaUnderPR(),metrics.areaUnderROC())
}
val allMetrics = metrics
allMetrics.foreach{ case (m, pr, roc) =>
println(f"$m, Area under PR: ${pr * 100.0}%2.4f%%, Area under ROC: ${roc * 100.0}%2.4f%%")
}
/*LogisticRegressionModel, Area under PR: 74.1103%, Area under ROC: 62.0064%*/

6,总结

  1,如何能提高更明显的精度。。。。。

  2,对逻辑回归的认识还不够。。。。

SparkMLlib分类算法之逻辑回归算法的更多相关文章

  1. SparkMLlib学习分类算法之逻辑回归算法

    SparkMLlib学习分类算法之逻辑回归算法 (一),逻辑回归算法的概念(参考网址:http://blog.csdn.net/sinat_33761963/article/details/51693 ...

  2. 分类算法之逻辑回归(Logistic Regression

    分类算法之逻辑回归(Logistic Regression) 1.二分类问题 现在有一家医院,想要对病人的病情进行分析,其中有一项就是关于良性\恶性肿瘤的判断,现在有一批数据集是关于肿瘤大小的,任务就 ...

  3. sklearn调用逻辑回归算法

    1.逻辑回归算法即可以看做是回归算法,也可以看作是分类算法,通常用来解决分类问题,主要是二分类问题,对于多分类问题并不适合,也可以通过一定的技巧变形来间接解决. 2.决策边界是指不同分类结果之间的边界 ...

  4. 逻辑回归算法的原理及实现(LR)

    Logistic回归虽然名字叫"回归" ,但却是一种分类学习方法.使用场景大概有两个:第一用来预测,第二寻找因变量的影响因素.逻辑回归(Logistic Regression, L ...

  5. 一小部分机器学习算法小结: 优化算法、逻辑回归、支持向量机、决策树、集成算法、Word2Vec等

    优化算法 先导知识:泰勒公式 \[ f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n \] 一阶泰勒展开: \[ f(x)\approx ...

  6. Spark机器学习(2):逻辑回归算法

    逻辑回归本质上也是一种线性回归,和普通线性回归不同的是,普通线性回归特征到结果输出的是连续值,而逻辑回归增加了一个函数g(z),能够把连续值映射到0或者1. MLLib的逻辑回归类有两个:Logist ...

  7. 《BI那点儿事》Microsoft 逻辑回归算法——预测股票的涨跌

    数据准备:一组股票历史成交数据(股票代码:601106 中国一重),起止日期:2011-01-04至今,其中变量有“开盘”.“最高”.“最低”.“收盘”.“总手”.“金额”.“涨跌”等 UPDATE ...

  8. Python实现机器学习算法:逻辑回归

    import numpy as np import matplotlib.pyplot as plt from sklearn.datasets.samples_generator import ma ...

  9. 每日一个机器学习算法——LR(逻辑回归)

    本系列文章用于汇集知识点,查漏补缺,面试找工作之用.数学公式较多,解释较少. 1.假设 2.sigmoid函数: 3.假设的含义: 4.性质: 5.找一个凸损失函数 6.可由最大似然估计推导出 单个样 ...

随机推荐

  1. [poj] 3304 Segments || 判断线段相交

    原题 给出n条线段,判断是否有一条直线与所有线段都有交点 若存在这样一条直线,那么一定存在一条至少过两个线段的端点的直线满足条件. 每次枚举两条线段的两个端点,确定一条直线,判断是否与其他线段都有交点 ...

  2. BZOJ1055[HAOI2008]玩具取名 【区间dp + 记忆化搜索】

    题目 某人有一套玩具,并想法给玩具命名.首先他选择WING四个字母中的任意一个字母作为玩具的基本名字.然后 他会根据自己的喜好,将名字中任意一个字母用“WING”中任意两个字母代替,使得自己的名字能够 ...

  3. PL/SQL 查询结果集直接修改数据

    使用t.rowid,查询可以直接在查询结果中修改提交 SELECT t.rowid,t.* from  UC_ROLE t where ROLE_NAME like '% %'

  4. 【HDU 2594 Simpsons' Hidden Talents】

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission( ...

  5. 刷题总结——Interval query(hdu4343倍增+贪心)

    题目: Problem Description This is a very simple question. There are N intervals in number axis, and M ...

  6. Windows1小时后关机命令

    shutdown -s -t 3600 1.注销当前用户 shutdown - l 该命令只能注销本机用户,对远程计算机不适用. 2.关闭本地计算机 shutdown - s 3.重启本地计算机 sh ...

  7. [ CodeVS冲杯之路 ] P1214

    不充钱,你怎么AC? 题目:http://codevs.cn/problem/1214/ 这道题类似于最长区间覆盖,仅仅是将最长区间改成了最多线段,我们贪心即可 先将线段直接右边-1,然后按左边为第一 ...

  8. request.getScheme()的使用方法

    今天在修改bug时,发现程序使用了 request.getScheme() .不明白是什么意思,在google 搜索了一下.现在明白了.整理如下: 1.request.getScheme() 返回当前 ...

  9. 火柴排队(NOIP2013)(附树状数组专题讲解(其实只是粗略。。。))

    原题传送门 首先,这道题目是一道神奇的题. 看到这道题,第一眼就觉得2个数组排个序,然后一一对应的时候一定差值最小. 由于我们可以将这2个数列同时进行调换. 所以我们先把2个数列排个序. 第二个序列中 ...

  10. MFC 实现打印机打印功能

    Visual C++6.0是开发Windows应用程序的强大工具,但是要通过它实现程序的打印功能,一直是初学者的一个难点,经常有朋友询问如何在VC中实现打印功能,他们往往感到在MFC提供的框架内实现这 ...