Linux内核之页面换出详解
kswap线程主要用于页面的定期换出,接下来说说kswap线程的实现
int inactive_shortage(void)
{
int shortage = 0;
//系统应该维持的物理内存由xxxhigh跟target维持
//实际的由下面3个函数统计,如果没法满足那就返回正数
shortage += freepages.high;
shortage += inactive_target;
shortage -= nr_free_pages();
shortage -= nr_inactive_clean_pages();
shortage -= nr_inactive_dirty_pages;
if (shortage > 0)
return shortage;
return 0;
}
/*
* Check if there are zones with a severe shortage of free pages,
* or if all zones have a minor shortage.
*/
int free_shortage(void)
{
pg_data_t *pgdat = pgdat_list;//节点
int sum = 0;
int freeable = nr_free_pages() + nr_inactive_clean_pages();//实际空闲
int freetarget = freepages.high + inactive_target / 3;//理论空闲
//实际小于理论,直接返回差值,表示需要扩充
/* Are we low on free pages globally? */
if (freeable < freetarget)
return freetarget - freeable;
/* If not, are we very low on any particular zone? */
do {
int i;
for(i = 0; i < MAX_NR_ZONES; i++) {
zone_t *zone = pgdat->node_zones+ i;//获取管理区
if (zone->size && (zone->inactive_clean_pages +
zone->free_pages < zone->pages_min+1)) {//空闲页面+干净不活跃页面是否小于最低水准
/* + 1 to have overlap with alloc_pages() !! */
sum += zone->pages_min + 1;
sum -= zone->free_pages;
sum -= zone->inactive_clean_pages;
}
}
pgdat = pgdat->node_next;
} while (pgdat);
return sum;
}
/**
* refill_inactive_scan - scan the active list and find pages to deactivate
* @priority: the priority at which to scan
* @oneshot: exit after deactivating one page
*
* This function will scan a portion of the active list to find
* unused pages, those pages will then be moved to the inactive list.
*///据priority的值扫描队列一部分页面,priority为0时才全部扫描
int refill_inactive_scan(unsigned int priority, int oneshot)
{
struct list_head * page_lru;
struct page * page;
int maxscan, page_active = 0;//maxscan控制扫描页面数目
int ret = 0;
/* Take the lock while messing with the list... */
spin_lock(&pagemap_lru_lock);
maxscan = nr_active_pages >> priority;
while (maxscan-- > 0 && (page_lru = active_list.prev) != &active_list) {
page = list_entry(page_lru, struct page, lru);
/* Wrong page on list?! (list corruption, should not happen) */
if (!PageActive(page)) {//扫描的页面必须是在活跃队列中
printk("VM: refill_inactive, wrong page on list.\n");
list_del(page_lru);
nr_active_pages--;
continue;
}
/* 判断页面是否受到访问,,决定增加或减少寿命,如果减少寿命到0,那说明此页面很久都没访问了Do aging on the pages. */
if (PageTestandClearReferenced(page)) {
age_page_up_nolock(page);
page_active = 1;
} else {
age_page_down_ageonly(page);
/*
* Since we don't hold a reference on the page
* ourselves, we have to do our test a bit more
* strict then deactivate_page(). This is needed
* since otherwise the system could hang shuffling
* unfreeable pages from the active list to the
* inactive_dirty list and back again...
*
* SUBTLE: we can have buffer pages with count 1.
*///缓冲页面如果引用计数大于1,说明还要用户空间映射,不能转为不活跃页面
if (page->age == 0 && page_count(page) <=
(page->buffers ? 2 : 1)) {
deactivate_page_nolock(page);
page_active = 0;
} else {
page_active = 1;
}
}
/*
* If the page is still on the active list, move it
* to the other end of the list. Otherwise it was
* deactivated by age_page_down and we exit successfully.
*/
if (page_active || PageActive(page)) {
list_del(page_lru);//如果页面还是活跃的,就放入活跃尾部
list_add(page_lru, &active_list);
} else {
ret = 1;
if (oneshot)//根据oneshot参数选择是否继续扫描一次
break;
}
}
spin_unlock(&pagemap_lru_lock);
return ret;
}
static int do_try_to_free_pages(unsigned int gfp_mask, int user)
{
int ret = 0;
/*
如果页面紧缺,或者脏的不活跃页面的数量大于空闲页面跟不活跃干净页面的数目
就需要调用page_launder试图把不活跃状态的脏页面洗净,使得它们成为立刻可分配的
页面
*/
if (free_shortage() || nr_inactive_dirty_pages > nr_free_pages() +
nr_inactive_clean_pages())
ret += page_launder(gfp_mask, user);
/*如果内存依旧紧缺
* If needed, we move pages from the active list
* to the inactive list. We also "eat" pages from
* the inode and dentry cache whenever we do this.
*///释放dentry目录项跟inode数据结构的缓存,即使关闭这些,页面也不会立刻释放
//而是保存到lru队列作为后备
if (free_shortage() || inactive_shortage()) {
shrink_dcache_memory(6, gfp_mask);//释放dentry目录项缓存
shrink_icache_memory(6, gfp_mask);//释放inode缓存
ret += refill_inactive(gfp_mask, user);//user表示是否有等待队列的进程
} else {
/*
* 否则回收slab缓存
*/
kmem_cache_reap(gfp_mask);
ret = 1;
}
return ret;
}
int page_launder(int gfp_mask, int sync)
{
int launder_loop, maxscan, cleaned_pages, maxlaunder;
int can_get_io_locks;
struct list_head * page_lru;
struct page * page;
/*
* We can only grab the IO locks (eg. for flushing dirty
* buffers to disk) if __GFP_IO is set.
*/
can_get_io_locks = gfp_mask & __GFP_IO;
launder_loop = 0;
maxlaunder = 0;
cleaned_pages = 0;
dirty_page_rescan:
spin_lock(&pagemap_lru_lock);
maxscan = nr_inactive_dirty_pages;//避免重复处理同一页面,设定的变量
//对不活跃脏页面队列扫描
while ((page_lru = inactive_dirty_list.prev) != &inactive_dirty_list &&
maxscan-- > 0) {
page = list_entry(page_lru, struct page, lru);
/* Wrong page on list?! (list corruption, should not happen) */
if (!PageInactiveDirty(page)) {检查其标志是否为1
printk("VM: page_launder, wrong page on list.\n");
list_del(page_lru);//从队列中删除
nr_inactive_dirty_pages--;
page->zone->inactive_dirty_pages--;
continue;
}
/* 到了脏队列,由于可能受到访问,就会放入活跃页面队列Page is or was in use? Move it to the active list. */
if (PageTestandClearReferenced(page) || page->age > 0 ||
(!page->buffers && page_count(page) > 1) ||
page_ramdisk(page)) {
del_page_from_inactive_dirty_list(page);//删除非活跃队列
add_page_to_active_list(page);//加入到活跃队列中
continue;
}
/*页面是否被锁住,是的话表示把它移到队列尾部
* The page is locked. IO in progress?
* Move it to the back of the list.
*/
if (TryLockPage(page)) {
list_del(page_lru);
list_add(page_lru, &inactive_dirty_list);
continue;
}
/*
* Dirty swap-cache page? Write it out if
* last copy..
*/
if (PageDirty(page)) {//是脏页面
int (*writepage)(struct page *) = page->mapping->a_ops->writepage;
int result;
if (!writepage)//如果没有提供具体写swp的函数,则放入活跃队列中
goto page_active;
/*判断是否是第一次扫描,是的话就移到队列尾部,继续 First time through? Move it to the back of the list */
if (!launder_loop) {
list_del(page_lru);
list_add(page_lru, &inactive_dirty_list);
UnlockPage(page);
continue;
}
/* OK, do a physical asynchronous write to swap. */
ClearPageDirty(page);//清除page结构的_dirty位,防止再次写入
page_cache_get(page);//增加page->count表示多了一个用户操作此
//页面,因为kswap线程把这个页面写出到swp设备中
spin_unlock(&pagemap_lru_lock);
result = writepage(page);
page_cache_release(page);//count--完成了写入操作
//所以就用户--了
/* And re-start the thing.. */
spin_lock(&pagemap_lru_lock);
if (result != 1)//写入失败的话
continue;
/* writepage refused to do anything */
set_page_dirty(page);//又设置为脏页
goto page_active;
}
/*
* 如果页面不是脏的然后又是用于缓存文件读写的页面
*/
if (page->buffers) {
int wait, clearedbuf;
int freed_page = 0;
/*
* Since we might be doing disk IO, we have to
* drop the spinlock and take an extra reference
* on the page so it doesn't go away from under us.
*/
del_page_from_inactive_dirty_list(page);//脱离脏队列
page_cache_get(page);//表示kswap进程需要作用于page,count++
spin_unlock(&pagemap_lru_lock);
/* Will we do (asynchronous) IO? */
if (launder_loop && maxlaunder == 0 && sync)
wait = 2; /* Synchrounous IO */
else if (launder_loop && maxlaunder-- > 0)
wait = 1; /* Async IO */
else
wait = 0; /* No IO */
/*试图将页面释放,这里是count减一 Try to free the page buffers. */
clearedbuf = try_to_free_buffers(page, wait);
/*
* Re-take the spinlock. Note that we cannot
* unlock the page yet since we're still
* accessing the page_struct here...
*/
spin_lock(&pagemap_lru_lock);
/* 不能释放或者说释放失败继续放入脏队列The buffers were not freed. */
if (!clearedbuf) {
add_page_to_inactive_dirty_list(page);
/*/*页面只在buffer cache队列中,而不在某个文件的inode->i_mapping中,这样的页有超级块,索引节点位图等等,它们不属于某个文件,因此我们就成功释放了一个页面*/
如果该页面只用于缓存,而非映射The page was only in the buffer cache. */} else if (!page->mapping) {
atomic_dec(&buffermem_pages);
freed_page = 1;
cleaned_pages++;
/* *否则这个页面还在某个文件的inode->i_mapping中,并且还有超过2个用户(the cache and us)在访问它,例如有多个进程映射到该文件如果该页有几个用户,加入到活跃队列中The page has more users besides the cache and us. */
} else if (page_count(page) > 2) {
add_page_to_active_list(page);
/* 最后,只剩下page->mapping && page_count(page) == 2,说明虽然这个页面还在某个inode->i_mapping中,但是已经没有任何用户在访问他们了,因此可以释放该页面OK, we "created" a freeable page. */
} else /* page->mapping && page_count(page) == 2 */ {
add_page_to_inactive_clean_list(page);
cleaned_pages++;
}
/*
* Unlock the page and drop the extra reference.
* We can only do it here because we ar accessing
* the page struct above.
*/
UnlockPage(page);
page_cache_release(page);//最终释放页面到空闲队列缓存中
/*
* If we're freeing buffer cache pages, stop when
* we've got enough free memory.
释放了一个页面,并且系统内存不再紧缺,那就停止
*/
if (freed_page && !free_shortage())
break;
continue;//页面不再是脏页面,并且属于address_space红
} else if (page->mapping && !PageDirty(page)) {
/*
* If a page had an extra reference in
* deactivate_page(), we will find it here.
* Now the page is really freeable, so we
* move it to the inactive_clean list.
*/
del_page_from_inactive_dirty_list(page);//转移到不活跃队列中
add_page_to_inactive_clean_list(page);
UnlockPage(page);
cleaned_pages++;
} else {
page_active:
/*
* OK, we don't know what to do with the page.
* It's no use keeping it here, so we move it to
* the active list.
*/
del_page_from_inactive_dirty_list(page);
add_page_to_active_list(page);
UnlockPage(page);
}
}
spin_unlock(&pagemap_lru_lock);
/*
* If we don't have enough free pages, we loop back once
* to queue the dirty pages for writeout. When we were called
* by a user process (that /needs/ a free page) and we didn't
* free anything yet, we wait synchronously on the writeout of
* MAX_SYNC_LAUNDER pages.
*
* We also wake up bdflush, since bdflush should, under most
* loads, flush out the dirty pages before we have to wait on
* IO.
*///如果内存继续紧缺,那就二次扫描一趟
if (can_get_io_locks && !launder_loop && free_shortage()) {
launder_loop = 1;
/* If we cleaned pages, never do synchronous IO. */
if (cleaned_pages)
sync = 0;
/* We only do a few "out of order" flushes. */
maxlaunder = MAX_LAUNDER;
/* Kflushd takes care of the rest. */
wakeup_bdflush(0);
goto dirty_page_rescan;
}
/* Return the number of pages moved to the inactive_clean list. */
return cleaned_pages;//返回有多少页面被移到不活跃干净页面中
}
/*
* We need to make the locks finer granularity, but right
* now we need this so that we can do page allocations
* without holding the kernel lock etc.
*
* We want to try to free "count" pages, and we want to
* cluster them so that we get good swap-out behaviour.
*
* OTOH, if we're a user process (and not kswapd), we
* really care about latency. In that case we don't try
* to free too many pages.
*/
static int refill_inactive(unsigned int gfp_mask, int user)
{
int priority, count, start_count, made_progress;
count = inactive_shortage() + free_shortage();//获取需要的页面数目
if (user)
count = (1 << page_cluster);
start_count = count;
/* 任何时候,当页面紧缺时,从slab开始回收Always trim SLAB caches when memory gets low. */
kmem_cache_reap(gfp_mask);
priority = 6;//从最低优先级别6开始
do {
made_progress = 0;
//每次循环都要检查下当前进程是否被设置被调度,设置了,说明某个中断程序需要调度
if (current->need_resched) {
__set_current_state(TASK_RUNNING);
schedule();
}
//扫描活跃页面队列,试图从中找出可以转入不活跃状态页面
while (refill_inactive_scan(priority, 1)) {
made_progress = 1;
if (--count <= 0)
goto done;
}
/*
* don't be too light against the d/i cache since
* refill_inactive() almost never fail when there's
* really plenty of memory free.
*/
shrink_dcache_memory(priority, gfp_mask);
shrink_icache_memory(priority, gfp_mask);
/*试图找出一个进程,扫描其映射表,找到可以转入不活跃状态页面
* Then, try to page stuff out..
*/
while (swap_out(priority, gfp_mask)) {
made_progress = 1;
if (--count <= 0)
goto done;
}
/*
* If we either have enough free memory, or if
* page_launder() will be able to make enough
* free memory, then stop.
*/
if (!inactive_shortage() || !free_shortage())
goto done;
/*
* Only switch to a lower "priority" if we
* didn't make any useful progress in the
* last loop.
*/
if (!made_progress)
priority--;
} while (priority >= 0);
/* Always end on a refill_inactive.., may sleep... */
while (refill_inactive_scan(0, 1)) {
if (--count <= 0)
goto done;
}
done:
return (count < start_count);
}
static int swap_out(unsigned int priority, int gfp_mask)
{
int counter;//循环次数
int __ret = 0;
/*
* We make one or two passes through the task list, indexed by
* assign = {0, 1}:
* Pass 1: select the swappable task with maximal RSS that has
* not yet been swapped out.
* Pass 2: re-assign rss swap_cnt values, then select as above.
*
* With this approach, there's no need to remember the last task
* swapped out. If the swap-out fails, we clear swap_cnt so the
* task won't be selected again until all others have been tried.
*
* Think of swap_cnt as a "shadow rss" - it tells us which process
* we want to page out (always try largest first).
*///根据内核中进程的个数跟调用swap_out的优先级计算得到的
counter = (nr_threads << SWAP_SHIFT) >> priority;
if (counter < 1)
counter = 1;
for (; counter >= 0; counter--) {
struct list_head *p;
unsigned long max_cnt = 0;
struct mm_struct *best = NULL;
int assign = 0;
int found_task = 0;
select:
spin_lock(&mmlist_lock);
p = init_mm.mmlist.next;
for (; p != &init_mm.mmlist; p = p->next) {
struct mm_struct *mm = list_entry(p, struct mm_struct, mmlist);
if (mm->rss <= 0)
continue;
found_task++;
/* Refresh swap_cnt? */
if (assign == 1) {////增加这层判断目的是,但我们找不到mm->swap_cnt不为0的mm时候,
我们就会设置assign=1,然后再从新扫描一遍,此次就会直接把内存页面数量赋值给尚未考察页面数量,
从而从新刷新一次,这样我们就会从最富有的进程开始下手,mm->swap_cnt用于保证我们所说的轮流坐庄,
mm->rss则是保证劫富济贫第二轮循环,将mm->rss拷贝到mm_swap_cnt,从最大的开始继续
mm->swap_cnt = (mm->rss >> SWAP_SHIFT);//记录一次轮换中尚未内存页面尚未考察的数量
if (mm->swap_cnt < SWAP_MIN)
mm->swap_cnt = SWAP_MIN;
}
if (mm->swap_cnt > max_cnt) {
max_cnt = mm->swap_cnt;
best = mm;
}
}///从循环退出来,我们就找到了最大的mm->swap_cnt的mm
/* Make sure it doesn't disappear */
if (best)
atomic_inc(&best->mm_users);
spin_unlock(&mmlist_lock);
/*
* We have dropped the tasklist_lock, but we
* know that "mm" still exists: we are running
* with the big kernel lock, and exit_mm()
* cannot race with us.
*/
if (!best) {
if (!assign && found_task > 0) {//第一次进入,表示所有进程mm->swap_cnt都为0,第2次不会再进入了,一般不会出现第2次
assign = 1;//第二轮循环
goto select;
}
break;
} else {//扫出一个最佳换出的进程,调用swap_out_mm
__ret = swap_out_mm(best, gfp_mask);
mmput(best);
break;
}
}
return __ret;
}
/*
* The swap-out functions return 1 if they successfully
* threw something out, and we got a free page. It returns
* zero if it couldn't do anything, and any other value
* indicates it decreased rss, but the page was shared.
*
* NOTE! If it sleeps, it *must* return 1 to make sure we
* don't continue with the swap-out. Otherwise we may be
* using a process that no longer actually exists (it might
* have died while we slept).
*/
static int try_to_swap_out(struct mm_struct * mm, struct vm_area_struct* vma, unsigned long address, pte_t * page_table, int gfp_mask)
{
pte_t pte;
swp_entry_t entry;
struct page * page;
int onlist;
pte = *page_table;//获取页表项
if (!pte_present(pte))//是否存在物理内存中
goto out_failed;
page = pte_page(pte);//获取具体的页
if ((!VALID_PAGE(page)) || PageReserved(page))//页面不合法或者页面不允许换出swap分区
goto out_failed;
if (!mm->swap_cnt)
return 1;
//需要具体的考察访问一个页面,swap_cnt减一
mm->swap_cnt--;
onlist = PageActive(page);//判断是否活跃
/* Don't look at this pte if it's been accessed recently. */
if (ptep_test_and_clear_young(page_table)) {//测试页面是否访问过(访问过说明年轻)
age_page_up(page);//增加保留观察时间
goto out_failed;
}
if (!onlist)//即使不在活跃队列,而且最近没有访问,还不能立刻换出,而要保留观察,直到其
//page->age等于0为止
age_page_down_ageonly(page);
/*
* If the page is in active use by us, or if the page
* is in active use by others, don't unmap it or
* (worse) start unneeded IO.
*/
if (page->age > 0)
goto out_failed;
if (TryLockPage(page))
goto out_failed;
/* From this point on, the odds are that we're going to
* nuke this pte, so read and clear the pte. This hook
* is needed on CPUs which update the accessed and dirty
* bits in hardware.
*///把页表项的内容清0(撤销了映射)
pte = ptep_get_and_clear(page_table);
flush_tlb_page(vma, address);
/*
* Is the page already in the swap cache? If so, then
* we can just drop our reference to it without doing
* any IO - it's already up-to-date on disk.
*
* Return 0, as we didn't actually free any real
* memory, and we should just continue our scan.
*/
if (PageSwapCache(page)) {//判断该页是否已经在swap缓存中
entry.val = page->index;
if (pte_dirty(pte))
set_page_dirty(page);//转入脏页面
set_swap_pte:
swap_duplicate(entry);//对index做一些印证
set_pte(page_table, swp_entry_to_pte(entry));//设置pte为swap的索引了,这样完成了交换
drop_pte:
UnlockPage(page);
mm->rss--;//物理页面断开的映射,所以rss--
deactivate_page(page);//将其从活跃队列移到不活跃队列中
page_cache_release(page);//释放页面缓存
out_failed:
return 0;
}
/*
* Is it a clean page? Then it must be recoverable
* by just paging it in again, and we can just drop
* it..
*
* However, this won't actually free any real
* memory, as the page will just be in the page cache
* somewhere, and as such we should just continue
* our scan.
*
* Basically, this just makes it possible for us to do
* some real work in the future in "refill_inactive()".
*/
flush_cache_page(vma, address);
if (!pte_dirty(pte))
goto drop_pte;
/*
* Ok, it's really dirty. That means that
* we should either create a new swap cache
* entry for it, or we should write it back
* to its own backing store.
*/
if (page->mapping) {
set_page_dirty(page);
goto drop_pte;
}
/*
* This is a dirty, swappable page. First of all,
* get a suitable swap entry for it, and make sure
* we have the swap cache set up to associate the
* page with that swap entry.
*/
entry = get_swap_page();
if (!entry.val)
goto out_unlock_restore; /* No swap space left */
/* Add it to the swap cache and mark it dirty */
add_to_swap_cache(page, entry);
set_page_dirty(page);
goto set_swap_pte;
out_unlock_restore:
set_pte(page_table, pte);
UnlockPage(page);
return 0;
}
Linux内核之页面换出详解的更多相关文章
- Linux内核数据结构之kfifo详解
本文分析的原代码版本: 2.6.24.4 kfifo的定义文件: kernel/kfifo.c kfifo的头文件: include/linux/kfifo.h kfifo是内核里面的一个First ...
- Linux 内核参数 arp_ignore & arp_announce 详解
arp_ignore定义了对目标地址为本机IP的ARP询问的不同应答模式. arp_announce对网络接口(网卡)上发出的ARP请求包中的源IP地址作出相应的限制:主机会根据这个参数值的不同选择使 ...
- Linux内核线程kernel thread详解--Linux进程的管理与调度(十)
内核线程 为什么需要内核线程 Linux内核可以看作一个服务进程(管理软硬件资源,响应用户进程的种种合理以及不合理的请求). 内核需要多个执行流并行,为了防止可能的阻塞,支持多线程是必要的. 内核线程 ...
- Linux内核线程kernel thread详解--Linux进程的管理与调度(十)【转】
转自:http://blog.csdn.net/gatieme/article/details/51589205 日期 内核版本 架构 作者 GitHub CSDN 2016-06-02 Linux- ...
- Linux内核中kzalloc函数详解
**************************************************************************************************** ...
- Linux内核中container_of函数详解
http://www.linuxidc.com/Linux/2016-08/134481.htm
- Linux内核源代码目录结构详解
http://blog.csdn.net/u013014440/article/details/44024207
- Linux进程上下文切换过程context_switch详解--Linux进程的管理与调度(二十一)
1 前景回顾 1.1 Linux的调度器组成 2个调度器 可以用两种方法来激活调度 一种是直接的, 比如进程打算睡眠或出于其他原因放弃CPU 另一种是通过周期性的机制, 以固定的频率运行, 不时的检测 ...
- Linux驱动开发必看详解神秘内核(完全转载)
Linux驱动开发必看详解神秘内核 完全转载-链接:http://blog.chinaunix.net/uid-21356596-id-1827434.html IT168 技术文档]在开始步入L ...
随机推荐
- POJ:3268-Silver Cow Party
Silver Cow Party Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 26184 Accepted: 11963 De ...
- [BZOJ2527] [Poi2011]Meteors(整体二分)
对于单个国家,可以对答案进行二分,每次找出此时的陨石数量,如果大于需要的那么答案就在[l,mid],否则就在[mid+1,r]里面 而对于很多国家,也可以进行二分,solve(l,r,L,R)表示询问 ...
- [BZOJ2734][HNOI2012] 集合选数(状态压缩+思维)
Description 题目链接 Solution 可以根据条件构造出一个矩阵, 1 3 9 27 81... 2 6 18.... 4 12 36... 这个矩阵满足\(G[i][1]=G[i-1] ...
- TouTiao开源项目 分析笔记3
1.搭建NewsTabLayout片段 1.1.加载布局 @Nullable @Override public View onCreateView(LayoutInflater inflater, @ ...
- 多个".h"文件中声明及定义 全局变量和函数
一.".h"文件必须以如下格式书写 例:文件<CZ_efg_hi.h"> ------------文件内容----------- #ifndef CZ_Efg ...
- CSS3 Shape ---使用形状改变旁边内容的布局
注意 本文所实现的功能,在浏览器的支持上并不好,除chrome浏览器外其余的大部分浏览器均不支持,虽然可以使用polyfill解决,但也不能很好的支持,有时也会出错 polyfill使用方法 下载po ...
- 剑指Offer - 九度1367 - 二叉搜索树的后序遍历序列
剑指Offer - 九度1367 - 二叉搜索树的后序遍历序列2013-11-23 03:16 题目描述: 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出 ...
- USACO Section1.5 Number Triangles 解题报告
numtri解题报告 —— icedream61 博客园(转载请注明出处)--------------------------------------------------------------- ...
- ubuntu下eclipse 安装记录
基本是参考:http://www.metsky.com/archives/611.html 完成. 中间遇到小问题,在此记录下,方便遇到同样问题的难友. 先说下快速打开命令行快捷键:Ctrl+Alt+ ...
- postman与charles的结合使用
1.准备charles环境 Charles端口一般配置的为8888,不知道怎么配置详见charles文档 打开charles,发现访问浏览器任意页面都是失败. 在浏览器的高级设置中设置代理服务器,以火 ...