一笔画问题

时间限制:3000 ms  |  内存限制:65535 KB
难度:4
 
描述

zyc从小就比较喜欢玩一些小游戏,其中就包括画一笔画,他想请你帮他写一个程序,判断一个图是否能够用一笔画下来。

规定,所有的边都只能画一次,不能重复画。

 
输入
第一行只有一个正整数N(N<=10)表示测试数据的组数。
每组测试数据的第一行有两个正整数P,Q(P<=1000,Q<=2000),分别表示这个画中有多少个顶点和多少条连线。(点的编号从1到P)
随后的Q行,每行有两个正整数A,B(0<A,B<P),表示编号为A和B的两点之间有连线。
输出
如果存在符合条件的连线,则输出"Yes",
如果不存在符合条件的连线,输出"No"。
 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std; int edge[][];
int visited[];
int degree[];
int sum; void dfs(int p,int i){
int j;
visited[i+]=;
for(j=;j<p;j++){
if(edge[i][j]==&&visited[j+]==){
dfs(p,j);
}
}
} int main(int argc, char const *argv[])
{
int n;
scanf("%d",&n);
while(n--){
int p,q;
memset(edge,,sizeof(edge));
memset(visited,,sizeof(visited));
memset(degree,,sizeof(degree));
sum=;
scanf("%d%d",&p,&q);
for(int i=;i<q;i++){
int a,b;
scanf("%d%d",&a,&b);
edge[a-][b-]=edge[b-][a-]=;
degree[a]++;
degree[b]++; } for(int i=;i<=p;i++){
if(degree[i]%!=){
sum++;
}
}
dfs(p,); //这里的0是随意的
int t=;
for(int i=;i<=p;i++){
if(visited[i]==){
t=;
}
}
if((sum==||sum==)&&t==){
printf("Yes\n" );
}
else printf("No\n");
}
return ;
}

nyoj42欧拉回路的更多相关文章

  1. nyist 42 一笔画 (欧拉回路 + 并查集)

    nyoj42 分析: 若图G中存在这样一条路径,使得它恰通过G中每条边一次,则称该路径为欧拉路径. 若该路径是一个圈,则称为欧拉(Euler)回路. 具有欧拉回路的图称为欧拉图(简称E图).具有欧拉路 ...

  2. ACM/ICPC 之 混合图的欧拉回路判定-网络流(POJ1637)

    //网络流判定混合图欧拉回路 //通过网络流使得各点的出入度相同则possible,否则impossible //残留网络的权值为可改变方向的次数,即n个双向边则有n次 //Time:157Ms Me ...

  3. [poj2337]求字典序最小欧拉回路

    注意:找出一条欧拉回路,与判定这个图能不能一笔联通...是不同的概念 c++奇怪的编译规则...生不如死啊... string怎么用啊...cincout来救? 可以直接.length()我也是长见识 ...

  4. ACM: FZU 2112 Tickets - 欧拉回路 - 并查集

     FZU 2112 Tickets Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u P ...

  5. UVA 10054 the necklace 欧拉回路

    有n个珠子,每颗珠子有左右两边两种颜色,颜色有1~50种,问你能不能把这些珠子按照相接的地方颜色相同串成一个环. 可以认为有50个点,用n条边它们相连,问你能不能找出包含所有边的欧拉回路 首先判断是否 ...

  6. POJ 1637 混合图的欧拉回路判定

    题意:一张混合图,判断是否存在欧拉回路. 分析参考: 混合图(既有有向边又有无向边的图)中欧拉环.欧拉路径的判定需要借助网络流! (1)欧拉环的判定:一开始当然是判断原图的基图是否连通,若不连通则一定 ...

  7. codeforces 723E (欧拉回路)

    Problem One-Way Reform 题目大意 给一张n个点,m条边的无向图,要求给每条边定一个方向,使得最多的点入度等于出度,要求输出方案. 解题分析 最多点的数量就是入度为偶数的点. 将入 ...

  8. UVa 12118 检查员的难题(dfs+欧拉回路)

    https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  9. UVA 10054 (欧拉回路) The Necklace

    题目:这里 题意:有一种由彩色珠子连接而成的项链,每个珠子两半由不同颜色(由1到50的数字表示颜色)组成,相邻的两个珠子在接触的地方颜色相同,现在有一些零碎的珠子,确认它是否能 复原成完整的项链. 把 ...

随机推荐

  1. 《Advanced Bash-scripting Guide》学习(六):从/etc/fstab中读行

    本文所选的例子来自于<Advanced Bash-scripting Gudie>一书,译者 杨春敏 黄毅 ABS书上的例子: 代码块和I/O重定向 #!/bin/bash #从/etc/ ...

  2. 在ubuntu上安装svn+apache2

    参考网站: http://www.thinksaas.cn/group/topic/335434/ http://blog.sina.com.cn/s/blog_3eba8f1c0100dqk1.ht ...

  3. redhat linux 中设置网卡固定ip

    更改 /etc/sysconfig/network-scripts/ifcfg-eth0(第一个网卡为eth0) DEVICE=eth0#网卡设备名称 ONBOOT=yes#启动时是否激活 yes | ...

  4. linux命令学习笔记(28):tar命令

    通过SSH访问服务器,难免会要用到压缩,解压缩,打包,解包等,这时候tar命令就是是必不可少的一个功能强大的 工具.linux中最流行的tar是麻雀虽小,五脏俱全,功能强大. tar命令可以为linu ...

  5. THUPC2018 城市地铁规划

    $n$ 个点,你可以随意连成一棵树,一个点的贡献为 $F(度数) \space mod \space 59393$ ,$F$ 为给定多项式函数,不超过 $10$ 次 求这 $n$ 个点的最大贡献,和最 ...

  6. CodeForces - 682E: Alyona and Triangles(旋转卡壳求最大三角形)

    You are given n points with integer coordinates on the plane. Points are given in a way such that th ...

  7. C++语言对C的增强(1)——实用性、变量检测、struct类型、C++中所有变量和函数都必须有类型、bool类型、三目运算符

    1.“实用性”增强 C语言中的变量都必须在作用域开始的位置定义,C++中更强调语言的“实用性”,所有的变量都可以在需要使用时再定义. 2.变量检测加强 在C语言中,重复定义多个同名的全局变量是合法的: ...

  8. 皮肤和DLL和图片等项目文件完全整合到exe中

    C#开发的程序原生界面实在是太丑了,自己又没有美化天赋,所以只能使用皮肤控件了,网上找到了IrisSkin2,包含一个.dll文件和若干ssk后缀的皮肤文件,代码其实很简单的.但是后来发现个问题,就是 ...

  9. 8、Selenium+python安装HTMLTestRunner插件

    1.打开网址:http://tungwaiyip.info/software/HTMLTestRunner.html,下载HTMLTestRunner.py 2.copy其HTMLTestRunner ...

  10. MySQL 预处理语句prepare、execute、deallocate的使用

    所以对于中文乱码,需要去check的地方有如下3个:1.mysql窗口的字符编码(xshell连接的远程工具的字符集设置):2.数据库的字符编码(show variables like '%char% ...