from sklearn.datasets import load_iris
import numpy as np
import matplotlib.pyplot as plt iris = load_iris()
iris_data = iris.data
iris_target = iris.target
print(iris.feature_names) X = iris_data[:,0:2]
y = iris_data[:,3]
#['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)'] #We'll try to predict the petal length based on the sepal length and width.
#We'll also fit a regular linear regression to see how well the k-NN regression does in comparison #线性回归
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(X, y)
print ("The MSE is: {:.2}".format(np.power(y - lr.predict(X),2).mean())) #K-NN 回归
from sklearn.neighbors import KNeighborsRegressor
knnr = KNeighborsRegressor(n_neighbors=10)
knnr.fit(X, y)
print ("The MSE is: {:.2}".format(np.power(y - knnr.predict(X),2).mean())) #仅仅显示预测函数如何使用而已
print(knnr.predict(np.array([3.0,5.0]).reshape(1,-1))) #Let's look at what the k-NN regression does when we tell it to use the closest 10 points for regression:
f, ax = plt.subplots(nrows=2, figsize=(7, 10))
ax[0].set_title("Predictions")
ax[0].scatter(X[:, 0], X[:, 1], s=lr.predict(X)*80, label='LRPredictions', color='c', edgecolors='black')
ax[1].scatter(X[:, 0], X[:, 1], s=knnr.predict(X)*80, label='k-NNPredictions', color='m', edgecolors='black')
ax[0].legend()
ax[1].legend()
f.show() #针对某一个类别(KNN的效果优于线性)
setosa_idx = np.where(iris.target_names=='setosa')
setosa_mask = (iris.target == setosa_idx[0])
print(y[setosa_mask][:20])
print(knnr.predict(X)[setosa_mask][:20])
print(lr.predict(X)[setosa_mask][:20]) #针对某一个具体的点
#The k-NN regression is very simply calculated taking the average of the k closest point to the point being tested.
#Let's manually predict a single point:
example_point = X[0]
'''
原始真值
>>> X[0]
array([ 5.1, 3.5])
>>> y[0]
0.20000000000000001
''' from sklearn.metrics import pairwise
distances_to_example = pairwise.pairwise_distances(X)[0] #X[0]和其它150个元素(包括自己)的距离
ten_closest_points = X[np.argsort(distances_to_example)][:10] #排序后,寻找10个距离最小的索引
ten_closest_y = y[np.argsort(distances_to_example)][:10]#所这些最下的10个已知数找出来
print(ten_closest_y.mean()) #We can see that this is very close to what was expected.

['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']
The MSE is: 0.15
The MSE is: 0.069
[ 0.2]
[ 0.2  0.2  0.2  0.2  0.2  0.4  0.3  0.2  0.2  0.1  0.2  0.2  0.1  0.1  0.2
  0.4  0.4  0.3  0.3  0.3]
[ 0.28  0.17  0.21  0.2   0.31  0.27  0.21  0.31  0.19  0.17  0.29  0.28
  0.17  0.19  0.26  0.27  0.27  0.28  0.27  0.31]
[ 0.44636645  0.53893889  0.29846368  0.27338255  0.32612885  0.47403161
  0.13064785  0.42128532  0.22322028  0.49136065  0.56918808  0.27596658
  0.46627952  0.10298268  0.71709085  0.45411854  0.47403161  0.44636645
  0.73958795  0.30363175]
0.28

K-NN回归算法的更多相关文章

  1. K邻近回归算法

    代码: # -*- coding: utf-8 -*- """ Created on Fri Jul 13 10:40:22 2018 @author: zhen &qu ...

  2. Lasso回归算法: 坐标轴下降法与最小角回归法小结

    前面的文章对线性回归做了一个小结,文章在这: 线性回归原理小结.里面对线程回归的正则化也做了一个初步的介绍.提到了线程回归的L2正则化-Ridge回归,以及线程回归的L1正则化-Lasso回归.但是对 ...

  3. 基于Python的函数回归算法验证

    看机器学习看到了回归函数,看了一半看不下去了,看到能用方差进行函数回归,又手痒痒了,自己推公式写代码验证: 常见的最小二乘法是一阶函数回归回归方法就是寻找方差的最小值y = kx + bxi, yiy ...

  4. 机器学习之Logistic 回归算法

    1 Logistic 回归算法的原理 1.1 需要的数学基础 我在看机器学习实战时对其中的代码非常费解,说好的利用偏导数求最值怎么代码中没有体现啊,就一个简单的式子:θ= θ - α Σ [( hθ( ...

  5. 机器学习之logistic回归算法与代码实现原理

    Logistic回归算法原理与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10033567.html ...

  6. 机器学习经典算法具体解释及Python实现--K近邻(KNN)算法

    (一)KNN依旧是一种监督学习算法 KNN(K Nearest Neighbors,K近邻 )算法是机器学习全部算法中理论最简单.最好理解的.KNN是一种基于实例的学习,通过计算新数据与训练数据特征值 ...

  7. Spark MLlib架构解析(含分类算法、回归算法、聚类算法和协同过滤)

    Spark MLlib架构解析 MLlib的底层基础解析 MLlib的算法库分析 分类算法 回归算法 聚类算法 协同过滤 MLlib的实用程序分析 从架构图可以看出MLlib主要包含三个部分: 底层基 ...

  8. sklearn调用逻辑回归算法

    1.逻辑回归算法即可以看做是回归算法,也可以看作是分类算法,通常用来解决分类问题,主要是二分类问题,对于多分类问题并不适合,也可以通过一定的技巧变形来间接解决. 2.决策边界是指不同分类结果之间的边界 ...

  9. 机器学习算法-logistic回归算法

    Logistic回归算法调试 一.算法原理 Logistic回归算法是一种优化算法,主要用用于只有两种标签的分类问题.其原理为对一些数据点用一条直线去拟合,对数据集进行划分.从广义上来讲这也是一种多元 ...

  10. 机器学习-K近邻(KNN)算法详解

    一.KNN算法描述   KNN(K Near Neighbor):找到k个最近的邻居,即每个样本都可以用它最接近的这k个邻居中所占数量最多的类别来代表.KNN算法属于有监督学习方式的分类算法,所谓K近 ...

随机推荐

  1. GeekforGeeks Trie - 键树简单介绍 - 构造 插入 和 搜索

    版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/,未经本作者同意不得转载. https://blog.csdn.net/kenden23/article ...

  2. java 从零开始 第二天

    2015年4月28号晚,珠海.晴. Java 的基本数据类型 有整型(integer),浮点型(float),布尔型(boolean),字符型(char) 1.整型(integer) java最基本的 ...

  3. 基于Spring框架的Shiro配置(转发:http://kdboy.iteye.com/blog/1103794)

    一.在web.xml中添加shiro过滤器 <!-- Shiro filter--> <filter> <filter-name>shiroFilter</f ...

  4. 通过systemd配置Docker

    1. systemd Service相关目录 通常情况下,我们有3种方式可以配置etcd中的service.以docker为例,1)在目录/etc/systemd/system/docker.serv ...

  5. Yii2 如何更好的在页面注入CSS

    首先 先添加一个widgets,代码如下(提示:使用时注意修改命名空间) <?php /** * User: yiqing * Date: 2014/12/15 * Time: 0:21 */ ...

  6. java并发实现原子操作

    来自<java并发编程的艺术>.只是方便自己以后查找. 处理器如何实现原子操作 32位IA-32处理器使用基于对缓存加锁或总线加锁的方式来实现多处理器之间的原子操作.首先处理器会自动保证基 ...

  7. 《程序员代码面试指南》第三章 二叉树问题 遍历二叉树的神级方法 morris

    题目 遍历二叉树的神级方法 morris java代码 package com.lizhouwei.chapter3; /** * @Description:遍历二叉树的神级方法 morris * @ ...

  8. Never Go Away

    Hey if you ever want to leave it allif you ever want to lose control leave it all escape so far away ...

  9. QT下的QProcess调用外部程序

    头文件widget.h #ifndef WIDGET_H #define WIDGET_H #include <QWidget> namespace Ui { class Widget; ...

  10. Spring Cloud之统一fallback接口

    每个方法都配备一个fallback方法 不利于开发的 用类的方式 并且整个方法都是在同一个线程池里面的 主要对于client的修改: pom: <project xmlns="http ...