《挑战程序设计竞赛》上DP的一道习题。

很裸的多重背包。下面对比一下方法,倍增,优化定义,单调队列。

一开始我写的倍增,把C[i]分解成小于C[i]的2^x和一个余数r。

dp[i][j]的定义前i个数字能否到凑出j来,改成一位滚动数组。

#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<queue>
#include<vector>
#include<stack>
#include<vector>
#include<map>
#include<set>
#include<algorithm>
//#include<bits/stdc++.h>
using namespace std; #define PS push
#define PB push_back
#define MP make_pair
#define fi first
#define se second const int maxm = 1e5+;
const int maxn = ; bool dp[maxm]; int A[maxn], C[maxn]; int n, m; inline int read()
{
int ret; char c; while(c = getchar(),c<''||c>'');
ret = c-'';
while(c = getchar(),c>=''&&c<='') ret = ret* + c-'';
return ret;
} //#define LOCAL
int main()
{
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif
dp[] = true;
while(scanf("%d%d",&n,&m),n+m){
for(int i = ; i < n; i++)
A[i] = read();
for(int i = ; i < n; i++){
C[i] = read();
}
memset(dp+,,sizeof(bool)*m);
for(int i = ; i < n; i++){
int b = ,vol = A[i];
while((<<b)<=C[i]+){ //11...111 (b) <= C[i] -> 100.... <= C[i]+1
for(int S = m; S >= vol; S--){
dp[S] = dp[S-vol]||dp[S];
}
b++; vol<<=;
}
int r = C[i]-(<<(b-))+;
if(r){
int Vol = A[i]*r;
for(int S = m; S >= Vol; S--){
dp[S] = dp[S-Vol]||dp[S];
}
}
}
int ans = ;
for(int i = ; i <= m; i++) ans += dp[i];
printf("%d\n",ans);
}
return ;
}

binary

复杂度是O(n*m*sigma(logC[i]))。然后果断就TLE了。

再优化只有单调队列了,扎扎并没有想到怎么用单调队列。

书上的解法是优化定义,同样的时间复杂度记录bool信息太浪费了。

dp[i][j]表示前i种凑出面值j时第i种硬币最多的剩余。

核心代码:

        int ans = ;
memset(dp+,-,sizeof(int)*m);
for(int i = ; i < n; i++){
for(int j = ; j <= m; j++){
if(~dp[j]) dp[j] = C[i]; //之前凑出了j
else if(j >= A[i] && dp[j-A[i]]>) { //还可以在凑
dp[j] = dp[j-A[i]] - ;
ans++;
}else dp[j] = -; //凑不出
}
}

跑了1985ms。

另外还发现一件有意思的事情,

当我用一个临时变量数组cnt[j]记录凑出j的最小次数的时候,跑了1235ms。(系统分配似乎更快一点?

        int ans = ;
memset(dp+,,sizeof(bool)*m);
for(int i = ; i < n; i++){
int cnt[maxm] = {};
for(int j = A[i]; j <= m; j++){
if(!dp[j] && dp[j-A[i]] && cnt[j-A[i]] < C[i]){
cnt[j] = cnt[j-A[i]] + ;
ans++;
dp[j] = true;
}
}
}

参考了http://www.cnblogs.com/xinsheng/archive/2013/12/04/3458362.html之后,明白了单调队列的做法的。

总体来说是划分同余类,对于一个同余类用单调队列维护滑动窗口的最小值。(左端为最多减去C[i]个物品的的状态

这道题只要判断存在性,连单调性都用不上(insert不需要删除队尾元素),只要维护滑动窗口的和以及大小就可以了。

但是这道题数据丧心病狂,直接分组常数比较大TLE了。我改成判断0-1和完全才2891 ms飘过(常数写丑了

int ans = ;
memset(dp+,,sizeof(bool)*m);
for(int i = ; i < n; i++){
if(C[i] == ){
for(int j = m; j >= A[i]; j--){
dp[j] = dp[j-A[i]] || dp[j];
}
}
else if(A[i]*C[i] >= m){
for(int j = A[i]; j <= m; j++){
dp[j] = dp[j-A[i]] || dp[j];
}
}
else {
for(int r = ; r < A[i]; r++){
int sum = , hd = , rr = ;
for(int j = r; j <= m; j += A[i]){
if(rr - hd > C[i]){
sum -= q[hd++];
}
sum += q[rr++] = dp[j];
if(sum) dp[j] = true;
}
}
}
}
for(int i = ; i <= m; i++) ans += dp[i];

似乎完全的情况比较多的情况,我只改了一个语句的不同结果。。

dp[j] = dp[j-A[i]] || dp[j]; 2891 ms

if(dp[j-A[i]]) dp[j] = true; 2813 ms

if(dp[j-A[i]] && !dp[j]) dp[j] = true; 2110 ms

POJ 1742 Coins(多重背包,优化)的更多相关文章

  1. POJ 1742 Coins(多重背包, 单调队列)

    Description People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dollar. ...

  2. POJ 1742 Coins (多重背包)

    Coins Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 28448   Accepted: 9645 Descriptio ...

  3. poj 1742 coins_多重背包

    题意:给你N个种硬币,价值和数量,知道手表不大于m,问能组成(1~m)的价格有多少种情况 套套上次那题的模板直接就行了,http://blog.csdn.net/neng18/article/deta ...

  4. POJ 3260 The Fewest Coins(多重背包+全然背包)

    POJ 3260 The Fewest Coins(多重背包+全然背包) http://poj.org/problem?id=3260 题意: John要去买价值为m的商品. 如今的货币系统有n种货币 ...

  5. hdu 2844 poj 1742 Coins

    hdu 2844 poj 1742 Coins 题目相同,但是时限不同,原本上面的多重背包我初始化为0,f[0] = 1;用位或进行优化,f[i]=1表示可以兑成i,0表示不能. 在poj上运行时间正 ...

  6. poj 1742 Coins(二进制拆分+bitset优化多重背包)

    \(Coins\) \(solution:\) 这道题很短,开门见山,很明显的告诉了读者这是一道多重背包.但是这道题的数据范围很不友好,它不允许我们直接将这一题当做01背包去做.于是我们得想一想优化. ...

  7. poj 1742 Coins(二进制优化多重背包)

    传送门 解题思路 多重背包,二进制优化.就是把每个物品拆分成一堆连续的\(2\)的幂加起来的形式,然后把最后剩下的也当成一个元素.直接类似\(0/1\)背包的跑就行了,时间复杂度\(O(nmlogc) ...

  8. poj 1742 Coins (多重背包)

    http://poj.org/problem?id=1742 n个硬币,面值分别是A1...An,对应的数量分别是C1....Cn.用这些硬币组合起来能得到多少种面值不超过m的方案. 多重背包,不过这 ...

  9. Poj 1742 Coins(多重背包)

    一.Description People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dolla ...

随机推荐

  1. 洛谷P5048 [Ynoi2019模拟赛]Yuno loves sqrt technology III(分块)

    传送门 众所周知lxl是个毒瘤,Ynoi道道都是神仙题 用蒲公英那个分块的方法做结果两天没卡过去→_→ 首先我们分块,预处理块与块之间的答案,然后每次询问的时候拆成整块和两边剩下的元素 整块的答案很简 ...

  2. 事务隔离实现并发控制:MySQL系列之十

    一.并发访问控制 实现的并发访问的控制技术是基于锁: 锁分为表级锁和行级锁,MyISAM存储引擎不支持行级锁:InnoDB支持表级锁和行级锁: 锁的分类有读锁和写锁,读锁也被称为共享锁,加读锁的时候其 ...

  3. Meissel Lehmer Algorithm 求前n个数中素数个数 【模板】

    Count primes Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tot ...

  4. tomcat memecached session 共享同步问题的解决

    事件缘由:一个主项目“图说美物”,另外一个子功能是品牌商的入驻功能,是跟主项目分开的项目,为了共享登录的用户信息,而实现session共享,俩个tomcat,一个tomcat6,一个tomcat7 w ...

  5. AngularJs1.X学习--路由

    [三种使用说明:] $stateProvider.state('station.printQRCode', { //params: { 'parentOfficeId': null }, //一次性参 ...

  6. ZC01

    1.苏州市住房公积金管理中心 http://www.szgjj.gov.cn/szgjj/ 2.苏州社保 http://www.szsbzx.net.cn:9900/web/website/index ...

  7. Washing Plates 贪心

    https://www.hackerrank.com/contests/101hack41/challenges/washing-plates 给定n个物品,选这个物品,贡献 + p, 不选的话,贡献 ...

  8. DevOps的工程化

    孙敬云 --Worktile高级系统架构师,WTC成员 1.研发的困境 互联网的环境 互联网这个环境比较特别,包括现在不只是互联网,就算是被互联网赋能的这些“互联网+”的企业也在改变,用户在发生变化, ...

  9. 4.0.3的mongodb 安装和java使用

    一 整合 由于本人的码云太多太乱了,于是决定一个一个的整合到一个springboot项目里面. 附上自己的github项目地址 https://github.com/247292980/spring- ...

  10. HTML <pre> 标签

    需求 错落有致的规则说明 ps.我真的是一个后端开发... pre 元素中的文本通常会保留空格和换行符.而文本也会呈现为等宽字体.