基于版本jdk1.7.0_80

java.util.concurrent.Semaphore

代码如下

/*
* ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/ /*
*
*
*
*
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/ package java.util.concurrent;
import java.util.*;
import java.util.concurrent.locks.*;
import java.util.concurrent.atomic.*; /**
* A counting semaphore. Conceptually, a semaphore maintains a set of
* permits. Each {@link #acquire} blocks if necessary until a permit is
* available, and then takes it. Each {@link #release} adds a permit,
* potentially releasing a blocking acquirer.
* However, no actual permit objects are used; the {@code Semaphore} just
* keeps a count of the number available and acts accordingly.
*
* <p>Semaphores are often used to restrict the number of threads than can
* access some (physical or logical) resource. For example, here is
* a class that uses a semaphore to control access to a pool of items:
* <pre>
* class Pool {
* private static final int MAX_AVAILABLE = 100;
* private final Semaphore available = new Semaphore(MAX_AVAILABLE, true);
*
* public Object getItem() throws InterruptedException {
* available.acquire();
* return getNextAvailableItem();
* }
*
* public void putItem(Object x) {
* if (markAsUnused(x))
* available.release();
* }
*
* // Not a particularly efficient data structure; just for demo
*
* protected Object[] items = ... whatever kinds of items being managed
* protected boolean[] used = new boolean[MAX_AVAILABLE];
*
* protected synchronized Object getNextAvailableItem() {
* for (int i = 0; i < MAX_AVAILABLE; ++i) {
* if (!used[i]) {
* used[i] = true;
* return items[i];
* }
* }
* return null; // not reached
* }
*
* protected synchronized boolean markAsUnused(Object item) {
* for (int i = 0; i < MAX_AVAILABLE; ++i) {
* if (item == items[i]) {
* if (used[i]) {
* used[i] = false;
* return true;
* } else
* return false;
* }
* }
* return false;
* }
*
* }
* </pre>
*
* <p>Before obtaining an item each thread must acquire a permit from
* the semaphore, guaranteeing that an item is available for use. When
* the thread has finished with the item it is returned back to the
* pool and a permit is returned to the semaphore, allowing another
* thread to acquire that item. Note that no synchronization lock is
* held when {@link #acquire} is called as that would prevent an item
* from being returned to the pool. The semaphore encapsulates the
* synchronization needed to restrict access to the pool, separately
* from any synchronization needed to maintain the consistency of the
* pool itself.
*
* <p>A semaphore initialized to one, and which is used such that it
* only has at most one permit available, can serve as a mutual
* exclusion lock. This is more commonly known as a <em>binary
* semaphore</em>, because it only has two states: one permit
* available, or zero permits available. When used in this way, the
* binary semaphore has the property (unlike many {@link Lock}
* implementations), that the &quot;lock&quot; can be released by a
* thread other than the owner (as semaphores have no notion of
* ownership). This can be useful in some specialized contexts, such
* as deadlock recovery.
*
* <p> The constructor for this class optionally accepts a
* <em>fairness</em> parameter. When set false, this class makes no
* guarantees about the order in which threads acquire permits. In
* particular, <em>barging</em> is permitted, that is, a thread
* invoking {@link #acquire} can be allocated a permit ahead of a
* thread that has been waiting - logically the new thread places itself at
* the head of the queue of waiting threads. When fairness is set true, the
* semaphore guarantees that threads invoking any of the {@link
* #acquire() acquire} methods are selected to obtain permits in the order in
* which their invocation of those methods was processed
* (first-in-first-out; FIFO). Note that FIFO ordering necessarily
* applies to specific internal points of execution within these
* methods. So, it is possible for one thread to invoke
* {@code acquire} before another, but reach the ordering point after
* the other, and similarly upon return from the method.
* Also note that the untimed {@link #tryAcquire() tryAcquire} methods do not
* honor the fairness setting, but will take any permits that are
* available.
*
* <p>Generally, semaphores used to control resource access should be
* initialized as fair, to ensure that no thread is starved out from
* accessing a resource. When using semaphores for other kinds of
* synchronization control, the throughput advantages of non-fair
* ordering often outweigh fairness considerations.
*
* <p>This class also provides convenience methods to {@link
* #acquire(int) acquire} and {@link #release(int) release} multiple
* permits at a time. Beware of the increased risk of indefinite
* postponement when these methods are used without fairness set true.
*
* <p>Memory consistency effects: Actions in a thread prior to calling
* a "release" method such as {@code release()}
* <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
* actions following a successful "acquire" method such as {@code acquire()}
* in another thread.
*
* @since 1.5
* @author Doug Lea
*
*/ public class Semaphore implements java.io.Serializable {
private static final long serialVersionUID = -3222578661600680210L;
/** All mechanics via AbstractQueuedSynchronizer subclass */
private final Sync sync; /**
* Synchronization implementation for semaphore. Uses AQS state
* to represent permits. Subclassed into fair and nonfair
* versions.
*/
abstract static class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = 1192457210091910933L; Sync(int permits) {
setState(permits);
} final int getPermits() {
return getState();
} final int nonfairTryAcquireShared(int acquires) {
for (;;) {
int available = getState();
int remaining = available - acquires;
if (remaining < 0 ||
compareAndSetState(available, remaining))
return remaining;
}
} protected final boolean tryReleaseShared(int releases) {
for (;;) {
int current = getState();
int next = current + releases;
if (next < current) // overflow
throw new Error("Maximum permit count exceeded");
if (compareAndSetState(current, next))
return true;
}
} final void reducePermits(int reductions) {
for (;;) {
int current = getState();
int next = current - reductions;
if (next > current) // underflow
throw new Error("Permit count underflow");
if (compareAndSetState(current, next))
return;
}
} final int drainPermits() {
for (;;) {
int current = getState();
if (current == 0 || compareAndSetState(current, 0))
return current;
}
}
} /**
* NonFair version
*/
static final class NonfairSync extends Sync {
private static final long serialVersionUID = -2694183684443567898L; NonfairSync(int permits) {
super(permits);
} protected int tryAcquireShared(int acquires) {
return nonfairTryAcquireShared(acquires);
}
} /**
* Fair version
*/
static final class FairSync extends Sync {
private static final long serialVersionUID = 2014338818796000944L; FairSync(int permits) {
super(permits);
} protected int tryAcquireShared(int acquires) {
for (;;) {
if (hasQueuedPredecessors())
return -1;
int available = getState();
int remaining = available - acquires;
if (remaining < 0 ||
compareAndSetState(available, remaining))
return remaining;
}
}
} /**
* Creates a {@code Semaphore} with the given number of
* permits and nonfair fairness setting.
*
* @param permits the initial number of permits available.
* This value may be negative, in which case releases
* must occur before any acquires will be granted.
*/
public Semaphore(int permits) {
sync = new NonfairSync(permits);
} /**
* Creates a {@code Semaphore} with the given number of
* permits and the given fairness setting.
*
* @param permits the initial number of permits available.
* This value may be negative, in which case releases
* must occur before any acquires will be granted.
* @param fair {@code true} if this semaphore will guarantee
* first-in first-out granting of permits under contention,
* else {@code false}
*/
public Semaphore(int permits, boolean fair) {
sync = fair ? new FairSync(permits) : new NonfairSync(permits);
} /**
* Acquires a permit from this semaphore, blocking until one is
* available, or the thread is {@linkplain Thread#interrupt interrupted}.
*
* <p>Acquires a permit, if one is available and returns immediately,
* reducing the number of available permits by one.
*
* <p>If no permit is available then the current thread becomes
* disabled for thread scheduling purposes and lies dormant until
* one of two things happens:
* <ul>
* <li>Some other thread invokes the {@link #release} method for this
* semaphore and the current thread is next to be assigned a permit; or
* <li>Some other thread {@linkplain Thread#interrupt interrupts}
* the current thread.
* </ul>
*
* <p>If the current thread:
* <ul>
* <li>has its interrupted status set on entry to this method; or
* <li>is {@linkplain Thread#interrupt interrupted} while waiting
* for a permit,
* </ul>
* then {@link InterruptedException} is thrown and the current thread's
* interrupted status is cleared.
*
* @throws InterruptedException if the current thread is interrupted
*/
public void acquire() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
} /**
* Acquires a permit from this semaphore, blocking until one is
* available.
*
* <p>Acquires a permit, if one is available and returns immediately,
* reducing the number of available permits by one.
*
* <p>If no permit is available then the current thread becomes
* disabled for thread scheduling purposes and lies dormant until
* some other thread invokes the {@link #release} method for this
* semaphore and the current thread is next to be assigned a permit.
*
* <p>If the current thread is {@linkplain Thread#interrupt interrupted}
* while waiting for a permit then it will continue to wait, but the
* time at which the thread is assigned a permit may change compared to
* the time it would have received the permit had no interruption
* occurred. When the thread does return from this method its interrupt
* status will be set.
*/
public void acquireUninterruptibly() {
sync.acquireShared(1);
} /**
* Acquires a permit from this semaphore, only if one is available at the
* time of invocation.
*
* <p>Acquires a permit, if one is available and returns immediately,
* with the value {@code true},
* reducing the number of available permits by one.
*
* <p>If no permit is available then this method will return
* immediately with the value {@code false}.
*
* <p>Even when this semaphore has been set to use a
* fair ordering policy, a call to {@code tryAcquire()} <em>will</em>
* immediately acquire a permit if one is available, whether or not
* other threads are currently waiting.
* This &quot;barging&quot; behavior can be useful in certain
* circumstances, even though it breaks fairness. If you want to honor
* the fairness setting, then use
* {@link #tryAcquire(long, TimeUnit) tryAcquire(0, TimeUnit.SECONDS) }
* which is almost equivalent (it also detects interruption).
*
* @return {@code true} if a permit was acquired and {@code false}
* otherwise
*/
public boolean tryAcquire() {
return sync.nonfairTryAcquireShared(1) >= 0;
} /**
* Acquires a permit from this semaphore, if one becomes available
* within the given waiting time and the current thread has not
* been {@linkplain Thread#interrupt interrupted}.
*
* <p>Acquires a permit, if one is available and returns immediately,
* with the value {@code true},
* reducing the number of available permits by one.
*
* <p>If no permit is available then the current thread becomes
* disabled for thread scheduling purposes and lies dormant until
* one of three things happens:
* <ul>
* <li>Some other thread invokes the {@link #release} method for this
* semaphore and the current thread is next to be assigned a permit; or
* <li>Some other thread {@linkplain Thread#interrupt interrupts}
* the current thread; or
* <li>The specified waiting time elapses.
* </ul>
*
* <p>If a permit is acquired then the value {@code true} is returned.
*
* <p>If the current thread:
* <ul>
* <li>has its interrupted status set on entry to this method; or
* <li>is {@linkplain Thread#interrupt interrupted} while waiting
* to acquire a permit,
* </ul>
* then {@link InterruptedException} is thrown and the current thread's
* interrupted status is cleared.
*
* <p>If the specified waiting time elapses then the value {@code false}
* is returned. If the time is less than or equal to zero, the method
* will not wait at all.
*
* @param timeout the maximum time to wait for a permit
* @param unit the time unit of the {@code timeout} argument
* @return {@code true} if a permit was acquired and {@code false}
* if the waiting time elapsed before a permit was acquired
* @throws InterruptedException if the current thread is interrupted
*/
public boolean tryAcquire(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
} /**
* Releases a permit, returning it to the semaphore.
*
* <p>Releases a permit, increasing the number of available permits by
* one. If any threads are trying to acquire a permit, then one is
* selected and given the permit that was just released. That thread
* is (re)enabled for thread scheduling purposes.
*
* <p>There is no requirement that a thread that releases a permit must
* have acquired that permit by calling {@link #acquire}.
* Correct usage of a semaphore is established by programming convention
* in the application.
*/
public void release() {
sync.releaseShared(1);
} /**
* Acquires the given number of permits from this semaphore,
* blocking until all are available,
* or the thread is {@linkplain Thread#interrupt interrupted}.
*
* <p>Acquires the given number of permits, if they are available,
* and returns immediately, reducing the number of available permits
* by the given amount.
*
* <p>If insufficient permits are available then the current thread becomes
* disabled for thread scheduling purposes and lies dormant until
* one of two things happens:
* <ul>
* <li>Some other thread invokes one of the {@link #release() release}
* methods for this semaphore, the current thread is next to be assigned
* permits and the number of available permits satisfies this request; or
* <li>Some other thread {@linkplain Thread#interrupt interrupts}
* the current thread.
* </ul>
*
* <p>If the current thread:
* <ul>
* <li>has its interrupted status set on entry to this method; or
* <li>is {@linkplain Thread#interrupt interrupted} while waiting
* for a permit,
* </ul>
* then {@link InterruptedException} is thrown and the current thread's
* interrupted status is cleared.
* Any permits that were to be assigned to this thread are instead
* assigned to other threads trying to acquire permits, as if
* permits had been made available by a call to {@link #release()}.
*
* @param permits the number of permits to acquire
* @throws InterruptedException if the current thread is interrupted
* @throws IllegalArgumentException if {@code permits} is negative
*/
public void acquire(int permits) throws InterruptedException {
if (permits < 0) throw new IllegalArgumentException();
sync.acquireSharedInterruptibly(permits);
} /**
* Acquires the given number of permits from this semaphore,
* blocking until all are available.
*
* <p>Acquires the given number of permits, if they are available,
* and returns immediately, reducing the number of available permits
* by the given amount.
*
* <p>If insufficient permits are available then the current thread becomes
* disabled for thread scheduling purposes and lies dormant until
* some other thread invokes one of the {@link #release() release}
* methods for this semaphore, the current thread is next to be assigned
* permits and the number of available permits satisfies this request.
*
* <p>If the current thread is {@linkplain Thread#interrupt interrupted}
* while waiting for permits then it will continue to wait and its
* position in the queue is not affected. When the thread does return
* from this method its interrupt status will be set.
*
* @param permits the number of permits to acquire
* @throws IllegalArgumentException if {@code permits} is negative
*
*/
public void acquireUninterruptibly(int permits) {
if (permits < 0) throw new IllegalArgumentException();
sync.acquireShared(permits);
} /**
* Acquires the given number of permits from this semaphore, only
* if all are available at the time of invocation.
*
* <p>Acquires the given number of permits, if they are available, and
* returns immediately, with the value {@code true},
* reducing the number of available permits by the given amount.
*
* <p>If insufficient permits are available then this method will return
* immediately with the value {@code false} and the number of available
* permits is unchanged.
*
* <p>Even when this semaphore has been set to use a fair ordering
* policy, a call to {@code tryAcquire} <em>will</em>
* immediately acquire a permit if one is available, whether or
* not other threads are currently waiting. This
* &quot;barging&quot; behavior can be useful in certain
* circumstances, even though it breaks fairness. If you want to
* honor the fairness setting, then use {@link #tryAcquire(int,
* long, TimeUnit) tryAcquire(permits, 0, TimeUnit.SECONDS) }
* which is almost equivalent (it also detects interruption).
*
* @param permits the number of permits to acquire
* @return {@code true} if the permits were acquired and
* {@code false} otherwise
* @throws IllegalArgumentException if {@code permits} is negative
*/
public boolean tryAcquire(int permits) {
if (permits < 0) throw new IllegalArgumentException();
return sync.nonfairTryAcquireShared(permits) >= 0;
} /**
* Acquires the given number of permits from this semaphore, if all
* become available within the given waiting time and the current
* thread has not been {@linkplain Thread#interrupt interrupted}.
*
* <p>Acquires the given number of permits, if they are available and
* returns immediately, with the value {@code true},
* reducing the number of available permits by the given amount.
*
* <p>If insufficient permits are available then
* the current thread becomes disabled for thread scheduling
* purposes and lies dormant until one of three things happens:
* <ul>
* <li>Some other thread invokes one of the {@link #release() release}
* methods for this semaphore, the current thread is next to be assigned
* permits and the number of available permits satisfies this request; or
* <li>Some other thread {@linkplain Thread#interrupt interrupts}
* the current thread; or
* <li>The specified waiting time elapses.
* </ul>
*
* <p>If the permits are acquired then the value {@code true} is returned.
*
* <p>If the current thread:
* <ul>
* <li>has its interrupted status set on entry to this method; or
* <li>is {@linkplain Thread#interrupt interrupted} while waiting
* to acquire the permits,
* </ul>
* then {@link InterruptedException} is thrown and the current thread's
* interrupted status is cleared.
* Any permits that were to be assigned to this thread, are instead
* assigned to other threads trying to acquire permits, as if
* the permits had been made available by a call to {@link #release()}.
*
* <p>If the specified waiting time elapses then the value {@code false}
* is returned. If the time is less than or equal to zero, the method
* will not wait at all. Any permits that were to be assigned to this
* thread, are instead assigned to other threads trying to acquire
* permits, as if the permits had been made available by a call to
* {@link #release()}.
*
* @param permits the number of permits to acquire
* @param timeout the maximum time to wait for the permits
* @param unit the time unit of the {@code timeout} argument
* @return {@code true} if all permits were acquired and {@code false}
* if the waiting time elapsed before all permits were acquired
* @throws InterruptedException if the current thread is interrupted
* @throws IllegalArgumentException if {@code permits} is negative
*/
public boolean tryAcquire(int permits, long timeout, TimeUnit unit)
throws InterruptedException {
if (permits < 0) throw new IllegalArgumentException();
return sync.tryAcquireSharedNanos(permits, unit.toNanos(timeout));
} /**
* Releases the given number of permits, returning them to the semaphore.
*
* <p>Releases the given number of permits, increasing the number of
* available permits by that amount.
* If any threads are trying to acquire permits, then one
* is selected and given the permits that were just released.
* If the number of available permits satisfies that thread's request
* then that thread is (re)enabled for thread scheduling purposes;
* otherwise the thread will wait until sufficient permits are available.
* If there are still permits available
* after this thread's request has been satisfied, then those permits
* are assigned in turn to other threads trying to acquire permits.
*
* <p>There is no requirement that a thread that releases a permit must
* have acquired that permit by calling {@link Semaphore#acquire acquire}.
* Correct usage of a semaphore is established by programming convention
* in the application.
*
* @param permits the number of permits to release
* @throws IllegalArgumentException if {@code permits} is negative
*/
public void release(int permits) {
if (permits < 0) throw new IllegalArgumentException();
sync.releaseShared(permits);
} /**
* Returns the current number of permits available in this semaphore.
*
* <p>This method is typically used for debugging and testing purposes.
*
* @return the number of permits available in this semaphore
*/
public int availablePermits() {
return sync.getPermits();
} /**
* Acquires and returns all permits that are immediately available.
*
* @return the number of permits acquired
*/
public int drainPermits() {
return sync.drainPermits();
} /**
* Shrinks the number of available permits by the indicated
* reduction. This method can be useful in subclasses that use
* semaphores to track resources that become unavailable. This
* method differs from {@code acquire} in that it does not block
* waiting for permits to become available.
*
* @param reduction the number of permits to remove
* @throws IllegalArgumentException if {@code reduction} is negative
*/
protected void reducePermits(int reduction) {
if (reduction < 0) throw new IllegalArgumentException();
sync.reducePermits(reduction);
} /**
* Returns {@code true} if this semaphore has fairness set true.
*
* @return {@code true} if this semaphore has fairness set true
*/
public boolean isFair() {
return sync instanceof FairSync;
} /**
* Queries whether any threads are waiting to acquire. Note that
* because cancellations may occur at any time, a {@code true}
* return does not guarantee that any other thread will ever
* acquire. This method is designed primarily for use in
* monitoring of the system state.
*
* @return {@code true} if there may be other threads waiting to
* acquire the lock
*/
public final boolean hasQueuedThreads() {
return sync.hasQueuedThreads();
} /**
* Returns an estimate of the number of threads waiting to acquire.
* The value is only an estimate because the number of threads may
* change dynamically while this method traverses internal data
* structures. This method is designed for use in monitoring of the
* system state, not for synchronization control.
*
* @return the estimated number of threads waiting for this lock
*/
public final int getQueueLength() {
return sync.getQueueLength();
} /**
* Returns a collection containing threads that may be waiting to acquire.
* Because the actual set of threads may change dynamically while
* constructing this result, the returned collection is only a best-effort
* estimate. The elements of the returned collection are in no particular
* order. This method is designed to facilitate construction of
* subclasses that provide more extensive monitoring facilities.
*
* @return the collection of threads
*/
protected Collection<Thread> getQueuedThreads() {
return sync.getQueuedThreads();
} /**
* Returns a string identifying this semaphore, as well as its state.
* The state, in brackets, includes the String {@code "Permits ="}
* followed by the number of permits.
*
* @return a string identifying this semaphore, as well as its state
*/
public String toString() {
return super.toString() + "[Permits = " + sync.getPermits() + "]";
}
}

0. Semaphore简介

Semaphore也是一个线程同步的辅助类,可以维护当前访问自身的线程个数,并提供了同步机制。使用Semaphore可以控制同时访问资源的线程个数,例如,实现一个文件允许的并发访问数。

Semaphore的主要方法摘要:

  void acquire():从此信号量获取一个许可,在提供一个许可前一直将线程阻塞,否则线程被中断。

  void release():释放一个许可,将其返回给信号量。

  int availablePermits():返回此信号量中当前可用的许可数。

  boolean hasQueuedThreads():查询是否有线程正在等待获取。

1. Semaphore原理概述

Semaphore利用AQS的state变量维护了信号量的计数,一旦发现acquire操作会导致state小于0,就阻塞当前线程,直到前驱线程释放了足够的信号量,才会唤醒当前线程继续执行。

release操作则会更新state变量,表示释放信号量的语义,同时还会去AQS的等待队列里检查,尝试唤醒后续的等待线程。

Semaphore提供了公平与非公平的实现方式。

2. Semaphore.acquire方法的执行轨迹

默认情况下,Semaphore采用的是非公平实现。

Semaphore.acquire
public void acquire() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
} AbstractQueuedSynchronizer.acquireSharedInterruptibly
public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
if (tryAcquireShared(arg) < 0)
doAcquireSharedInterruptibly(arg);
} Semaphore.NonfairSync.tryAcquireShared
protected int tryAcquireShared(int acquires) {
return nonfairTryAcquireShared(acquires);
} Semaphore.Sync.nonfairTryAcquireShared
final int nonfairTryAcquireShared(int acquires) {
for (;;) {
int available = getState();
int remaining = available - acquires;
if (remaining < 0 ||
compareAndSetState(available, remaining))//尝试插队抢占信号量
return remaining;
}
} AbstractQueuedSynchronizer.doAcquireSharedInterruptibly
/**
* Acquires in shared interruptible mode.
* @param arg the acquire argument
*/
private void doAcquireSharedInterruptibly(int arg)
throws InterruptedException {
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return;
}
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}

很经典的逻辑,除了自定义的tryAcquireShared方法以外,与上一篇提到的CountDownLatch.await方法的调用轨迹并无区别,在此不赘述其逻辑了

非公平的语义体现在Semaphore.Sync.nonfairTryAcquireShared方法中,会尝试直接用cas操作更新AQS维护的state变量,这是一个插队的行为。

3. Semaphore.release方法的执行轨迹

Semaphore.release
public void release() {
sync.releaseShared(1);
} AbstractQueuedSynchronizer.releaseShared
/**
* Releases in shared mode. Implemented by unblocking one or more
* threads if {@link #tryReleaseShared} returns true.
*
* @param arg the release argument. This value is conveyed to
* {@link #tryReleaseShared} but is otherwise uninterpreted
* and can represent anything you like.
* @return the value returned from {@link #tryReleaseShared}
*/
public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {
doReleaseShared();
return true;
}
return false;
} Semaphore.Sync.tryReleaseShared
protected final boolean tryReleaseShared(int releases) {
for (;;) {//在无限循环中用cas操作更新state变量
int current = getState();
int next = current + releases;
if (next < current) // overflow
throw new Error("Maximum permit count exceeded");
if (compareAndSetState(current, next))
return true;
}
} AbstractQueuedSynchronizer.doReleaseShared
/**
* Release action for shared mode -- signal successor and ensure
* propagation. (Note: For exclusive mode, release just amounts
* to calling unparkSuccessor of head if it needs signal.)
*/
private void doReleaseShared() {
/*
* Ensure that a release propagates, even if there are other
* in-progress acquires/releases. This proceeds in the usual
* way of trying to unparkSuccessor of head if it needs
* signal. But if it does not, status is set to PROPAGATE to
* ensure that upon release, propagation continues.
* Additionally, we must loop in case a new node is added
* while we are doing this. Also, unlike other uses of
* unparkSuccessor, we need to know if CAS to reset status
* fails, if so rechecking.
*/
for (;;) {
Node h = head;
if (h != null && h != tail) {
int ws = h.waitStatus;
if (ws == Node.SIGNAL) {
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
continue; // loop to recheck cases
unparkSuccessor(h);
}
else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
continue; // loop on failed CAS
}
if (h == head) // loop if head changed
break;
}
}

除了自定义的Semaphore.Sync.tryReleaseShared方法以外,与上一篇提到的CountDownLatch.countDown方法的调用轨迹并无区别,在此不赘述其逻辑了

4. Semaphore的公平语义

Semaphore.FairSync
/**
* Fair version
*/
static final class FairSync extends Sync {
private static final long serialVersionUID = 2014338818796000944L; FairSync(int permits) {
super(permits);
} protected int tryAcquireShared(int acquires) {
for (;;) {
if (hasQueuedPredecessors())//如果AQS维护的等待队列中有线程在排队,则拒绝执行tryAcquire操作,直接走后续的线程排队等待流程
return -1;
int available = getState();//用cas操作占领信号量的操作,只在AQS维护的等待队列为空时才会进行,这样就实现了公平语义
int remaining = available - acquires;
if (remaining < 0 ||
compareAndSetState(available, remaining))
return remaining;
}
}
}

从Semaphore.FairSync的源码可以看出,在调用tryAcquireShared方法时,如果AQS维护的等待队列中有线程在排队,则拒绝执行tryAcquire操作,直接走后续的线程排队等待流程。如果等待队列为空,也就是无竞争的情况下,才会尝试用cas操作去更新state变量。

这样就实现了公平语义。

J.U.C并发框架源码阅读(五)Semaphore的更多相关文章

  1. J.U.C并发框架源码阅读(二)AbstractQueuedSynchronizer

    基于版本jdk1.7.0_80 java.util.concurrent.locks.AbstractQueuedSynchronizer 代码如下 /* * ORACLE PROPRIETARY/C ...

  2. J.U.C并发框架源码阅读(六)ConditionObject

    基于版本jdk1.7.0_80 java.util.concurrent.locks.AbstractQueuedSynchronizer.ConditionObject 代码如下 /** * Con ...

  3. J.U.C并发框架源码阅读(八)ArrayBlockingQueue

    基于版本jdk1.7.0_80 java.util.concurrent.ArrayBlockingQueue 代码如下 /* * ORACLE PROPRIETARY/CONFIDENTIAL. U ...

  4. J.U.C并发框架源码阅读(十三)ThreadPoolExecutor

    基于版本jdk1.7.0_80 java.util.concurrent.ThreadPoolExecutor 代码如下 /* * ORACLE PROPRIETARY/CONFIDENTIAL. U ...

  5. J.U.C并发框架源码阅读(十五)CopyOnWriteArrayList

    基于版本jdk1.7.0_80 java.util.concurrent.CopyOnWriteArrayList 代码如下 /* * Copyright (c) 2003, 2011, Oracle ...

  6. J.U.C并发框架源码阅读(三)ReentrantLock

    基于版本jdk1.7.0_80 java.util.concurrent.locks.ReentrantLock 代码如下 /* * ORACLE PROPRIETARY/CONFIDENTIAL. ...

  7. J.U.C并发框架源码阅读(十二)ConcurrentHashMap

    基于版本jdk1.7.0_80 java.util.concurrent.ConcurrentHashMap 代码如下 /* * ORACLE PROPRIETARY/CONFIDENTIAL. Us ...

  8. J.U.C并发框架源码阅读(一)AtomicInteger

    基于版本jdk1.7.0_80 java.util.concurrent.atomic.AtomicInteger 代码如下 /* * ORACLE PROPRIETARY/CONFIDENTIAL. ...

  9. J.U.C并发框架源码阅读(七)CyclicBarrier

    基于版本jdk1.7.0_80 java.util.concurrent.CyclicBarrier 代码如下 /* * ORACLE PROPRIETARY/CONFIDENTIAL. Use is ...

随机推荐

  1. oracle(sql)基础篇系列(二)——多表连接查询、子查询、视图

    多表连接查询 内连接(inner join) 目的:将多张表中能通过链接谓词或者链接运算符连接起来的数据查询出来. 等值连接(join...on(...=...)) --选出雇员的名字和雇员所在的部门 ...

  2. Android学习记录(10)—Android之图片颜色处理

    你想做到跟美图秀秀一样可以处理自己的照片,美化自己的照片吗?其实你也可以自己做一个这样的软件,废话不多说了,直接上图,上代码了! 效果图如下: 没处理前: 处理之后: MainActivity.jav ...

  3. 关于代码通过API操作阿里云RDS的巨坑

    由于项目原因,要通过API操作阿里云的数据库,于是简单研究了一下阿里云提供的相关文档,发现官方提供了.NET的SDK,而且还提供了github开源代码,这个要为阿里点赞! 于是到github上弄了一份 ...

  4. 微信里经常看到的滑动翻页效果,slide

    上个星期我们的产品姐姐让我帮她写个微信里经常看到的滑动翻页效果,今天抽空写了3个小demo(只写了webkit需要chrome模拟手机看 开启touch事件), 故此写个随笔. 1.demo1,整个大 ...

  5. Linux利用OneinStack搭建环境

    OneinStack官方网站:https://oneinstack.com 介绍 OneinStack支持以下数种环境组合: LNMP(Linux + Nginx+ MySQL+ PHP) LAMP( ...

  6. Elasticsearch同义词词汇单元过滤器

    1 简单扩展 "jump,hop,leap" 搜索jump会检索出包含jump.hop或leap的词 1.1 扩展应用在索引阶段 1.2 扩展应用在查询阶段 1.3 对比 2 简单 ...

  7. pin

    sjhh@123456 Michael zhang zhangxiaocong_2011@yeah.net

  8. dirname(__FILE__)

    dirname() 函数返回路径中的目录部分. __FILE__ :被称为PHP魔术常量,返回当前执行PHP脚本的完整路径和文件名,包含一个绝对路径 dirname(__FILE__) 函数返回的是脚 ...

  9. html & email template

    html & email template inline style build tools https://templates.mailchimp.com/getting-started/h ...

  10. WordPress多本小说主题–WNovel主题发布,十分钟搭建小说站! 现已更新至1.2版本

    本文属于<WNovel主题操作手册>文章系列,该系列共包括以下 8 部分: WNovel主题使用手册之–主题安装及更新教程 WNovel主题使用手册之–小说管理 WNovel主题使用手册之 ...